
ITLPA701: PYTHON AND FUNDAMENTALS OF AI

Mr. Etienne NTAMBARA

ntambaraienne94@gmail.com

Assistant Lecturer in ICT Department

Rwanda Polytechnic, IPRC-HUYE

Homepage: https://94etienne.github.io/profile/

LEARNING UNIT 2–DEVELOP PYTHON CONCEPT

Learning hours: 9

January 30, 2025

mailto:ntambaraienne94@gmail.com
https://94etienne.github.io/profile/

Learning Outcomes:

• 2.1. Writing Python syntax

• 2.3. Perform declaration

• 2.4. Defferentiate data type

• Formative assessment 1: https://forms.gle/yrbyxPWweQqV9ufYA

https://forms.gle/yrbyxPWweQqV9ufYA

Learning Outcome 2.1: Writing python syntax

• The Python syntax defines a set of rules that are used to create Python
statements while writing a Python Program.

• Example :

• x = 5

• Age = 60

• Name = “MY NAME”

• x, y=8,9

• X = 7, Y = 10 => Wrong, float area = 9.0 => wrong

• The Python Programming Language Syntax has many similarities to Perl, C, and
Java Programming Languages.

• However, there are some definite differences between the languages.

• Python extension is .py

2.1.2. Use command line

• Let us execute a Python "Hello, World!" Programs in different modes
of programming

• 2.1.2.1. Python modes

• 1) Interactive Mode Programming

2) Script Mode Programming

• We can invoke the Python interpreter with a script parameter which
begins the execution of the script and continues until the script is
finished. When the script is finished, the interpreter is no longer
active.

• Let us write a simple Python program in a script which is simple text
file. Python files have extension .py.

• Type the following source code in a test.py file:

2.1.2.2 Compilation and execution

• In python compilation and execution are done whenever you run
python program

• In terminal or command prompt: Python3 simple_script.py OR
Python simple_script.py

2.1.2.2 Compilation and execution

• In GUI (pycharm)

2.1.2.3 Save python project in VSCODE

• Go to file

• SAVE AS

• Or press ctrl + s

2.1.2.4 Indentation

Indentation refers to the spaces at the beginning of a code line. Where
in other programming languages the indentation in code is for
readability only, the indentation in Python is very important. Python
uses indentation to indicate a block of code.

2.1.2.4 Indentation

2.1.2.4 Indentation

• However, the following block generates an error:

2.1.2.5 Python Reserved Words

2.1.3. Comments in Python

• Python comments are programmer-readable explanation or
annotations in the Python source code.

• They are added with the purpose of making the source code easier
for humans to understand, and are ignored by Python interpreter.

• Comments enhance the readability of the code and help the
programmers to understand the code very carefully.

• Just like most modern languages, Python supports single-line (or end-
of-line) and multi-line (block) comments.

• Python comments are very much similar to the comments available
in PHP, BASH and Perl Programming languages.

2.1.3. Comments in Python
• There are 2 types of comments available in Python

• Single line Comments

• Multiline Comments

• 2.1.3.1. Single Line Comments

• A hash sign (#) that is not inside a string literal begins a comment. All
characters after the # and up to the end of the physical line are part
of the comment and the Python interpreter ignores them

• Following is an example of a single line comment in Python: #

• # This is a single line comment in python

• print ("Hello, World!")

• This produces the following result: Hello, World!

2.1.3. Comments in Python
• You can type a comment on the same line after a statement or

expression.

• name = "Madisetti" # This is again comment

• 2.1.3.2. Multi-Line Comments

• Python does not provide a direct way to comment multiple line. You
can comment multiple lines as follows:

• Following triple-quoted string is also ignored by Python interpreter
and can be used as a multiline comments

Learning Outcome 2.2: Perform declaration

2.2.1. Definition of Key terms
• Declaration

• Variables

2.2.1.1 Variable declaration and Assignment
• Python variables are the reserved memory locations used to store

values with in a Python Program.

• This means that when you create a variable you reserve some space
in the memory.

• Based on the data type of a variable, Python interpreter allocates
memory and decides what can be stored in the reserved memory.

• Therefore, by assigning different data types to Python variables, you
can store integers, decimals or characters in these variables.

2.2.1.2. Variable declaration
• Python variables do not need explicit declaration to reserve memory

space or you can say to create a variable.

• A Python variable is created automatically when you assign a value to
it. The equal sign (=) is used to assign values to variables.

2.2.2. Assigning values
• Single value

• Multiple values

2.2.2.1. Single value assignment
• The operand to the left of the = operator is the name of the variable

and the operand to the right of the = operator is the value stored in
the variable. For example:

2.2.2.2. Multiple value assignment
• Multiple value assignment in Python allows you to assign values to

multiple variables in a single line. This feature simplifies code and
makes assignments more concise and readable.

• Example 1: Assigning Values to Multiple Variables

2.2.2.2. Multiple value assignment
• Python allows you to assign a single value to several variables

simultaneously which means you can create multiple variables at a
time.

• Example 2: Assigning the Same Value to Multiple Variables:

2.2.2.2. Multiple value assignment
• Example 3: Swapping Variables:

2.2.2.2. Multiple value assignment
• Example 4: Using Unpacking with Lists or Tuples:

2.2.2.2. Multiple value assignment
• Example 5: Ignoring Certain Values:

Above examples shows the different ways or methods of handling
multiple value assignments in Python.
1. Assigning Different Values to Multiple Variables:

• Example: x, y, z = 10, 20, 30

• This assigns individual values to multiple variables in one line.

2. Assigning the Same Value to Multiple Variables:

• Example: a = b = c = 100

• This assigns the same value to all the specified variables.

3. Swapping Variables:

• Example: x, y = y, x

• This swaps the values of two variables without needing a temporary variable.

4. Unpacking Values from Data Structures (Lists, Tuples):

• Example: a, b, c = (1, 2, 3)

• Assigns elements of a tuple or list to variables directly.

6. Ignoring Specific Values Using _:

• Example: x, _, z = (10, 20, 30)

• The underscore _ is used to ignore certain values during unpacking.

2.2.1.2. Python Variable Names

Every Python variable should have a unique name like a, b, c. A variable name
can be meaningful like

color, age, name etc. There are certain rules which should be taken care while
naming a Python variable:

i. A variable name must start with a letter or the underscore character

ii. A variable name cannot start with a number or any special character like
$, (, * % etc.

iii. A variable name can only contain alpha-numeric characters and
underscores (A-z, 0-9, and _)

iv. Python variable names are case-sensitive which means Name and NAME
are two different variables in Python.

v. Python reserved keywords cannot be used naming the variable.

Examples of Valid Variable Names

Examples of Invalid Variable Names

Examples of Case-Sensitive Variable Names

Key Takeaways:

• Always start a variable name with a letter or underscore.

• Avoid starting variable names with numbers or special characters.

• Use only alphanumeric characters and underscores in variable names.

• Remember that Python is case-sensitive.

• Avoid reserved keywords as variable names

2.2.3. Types of variables
• Local

• Global

• Global keywords

2.2.3.1. Python Local Variable
• Python Local Variables are defined inside a function. We can not

access variable outside the function.

• Example 1:

2.2.3.1. Python Local Variable
• Example 2

Key Points About Local Variables
• A local variable is created when the function is called and destroyed

once the function execution is completed.

• It cannot be accessed or modified outside its defining function.

• Local variables are useful for temporary or intermediate calculations
within a function.

2.2.3.2. Python Global Variable
• Any variable created outside a function can be accessed within any

function and so they have global scope.

• Following is an example of global variables:

2.2.3.2 Global keywords
• The global keyword in Python is used to modify a variable outside the

current function's scope, allowing functions to update global
variables.

Learning Outcome 2.3: Defferentiate data type

▪ Python Data Types are used to define the type

of a variable.

▪ It defines what type of data we are going to

store in a variable. The data stored in memory

can be of many types.

▪ For example, a person's age is stored as a

numeric value and his or her address is stored

as alphanumeric characters

2.3.1. Define build-in data type
• Python has various built-in data types:

1. Text

2. Numeric

3. Sequence

4. Mapping

5. String

6. Booleans

2.3.1.1. Text
• This includes strings in Python, which are used to store textual data.

Strings can be enclosed in single, double, or triple quotes.

2.3.1.2. Numeric
Numeric data types represent numbers. Python has three main numeric types:

• int: Integer values (e.g., 10, -5)

• float: Decimal numbers (e.g., 10.5, -0.99)

• complex: Numbers with a real and imaginary part (e.g., 2+3j)

2.3.1.3. Sequence

Sequence types are used to store multiple values in an ordered manner. Common
sequence types include:

▪ list: Mutable, ordered collection of items.

▪ tuple: Immutable, ordered collection of items.

▪ range: Sequence of numbers generated lazily.

2.3.1.3. Sequence
Example

2.3.1.4. Mapping
A mapping type in Python is a collection of key-value pairs. The most common
mapping type is a dictionary.

Example:

2.3.1.5. String
A String is a data structure in Python that represents a sequence of characters. It is
an immutable data type, meaning that once you have created a string, you cannot
change it. Strings are used widely in many different applications, such as storing
and manipulating text data, representing names, addresses, and other types of
data that can be represented as text. Python Strings are identified as a contiguous
set of characters represented in the quotation marks. Python allows for either
pairs of single or double quotes.

Creating a String in Python

Strings in Python can be created using single quotes or double quotes or even triple
quotes. Let us see how

we can define a string in Python.

2.3.1.5. String
Example: In this example, we will demonstrate different ways to create a Python String. We will
create a string using single quotes (‘ ‘), double quotes (” “), and triple double quotes (“”” “””). The
triple quotes can be used to declare multiline strings in Python

String Operations: Insert, Update, and Delete in Python

Python strings are immutable, meaning their
content cannot be directly modified. However, you
can achieve operations like insert, update, and
delete by creating a new string based on the
desired changes. Below are examples
demonstrating these operations.

String Operations: Insert, Update, and Delete in Python

Python strings are immutable, meaning their
content cannot be directly modified. However, you
can achieve operations like insert, update, and
delete by creating a new string based on the
desired changes.

Below are examples demonstrating these
operations.

Inserting a Substring
To insert a substring at a specific position in a string:

original[:position]:

This slices the string from the beginning up to (but not including) the index position.

For example, if original = "Hello Python!" and position = 6, original[:6] gives "Hello ".

"World ":

This is the string you are inserting. It will be added between the slices of the original string.

original[position:]:

This slices the string from the index position to the end of the string.

Using the same example, original[6:] gives "Python!".

Updating a String

To update part of a string, replace the desired
portion:

Deleting a Substring

•To delete a substring, remove it by slicing:

2.3.1.6. Booleans
• Python boolean type is one of built-in data types which represents one of the two values either

True or False.

• Python bool() function allows you to evaluate the value of any expression and returns either True
or False based on the expression.

Examples of Boolean Usage:

1. Evaluating Numbers:

2. Evaluating Strings:

3. Evaluating Lists, Tuples, and Other Containers:

4. Evaluating Logical Expressions

1. Evaluating Numbers

2. Evaluating Strings

3. Evaluating Lists, Tuples, and Other Containers:

4. Evaluating Logical Expressions:

Conclusion

• The boolean type is a fundamental part of Python, used in various
operations and decision-making processes. The bool() function can
help determine whether a value or expression is logically True or False

2.3.2. Numbers
Python provides three main numeric data types to handle different
kinds of numbers:

• Integer (int)

• Float (float)

• Complex (complex)

2.3.2.1. Integer (int)
Definition: Represents whole numbers (positive, negative, or zero)
without any fractional or decimal component.

• Characteristics:

• No decimal point.

• Can be arbitrarily large in Python (unlike fixed-size integers in some
other languages).

2.3.2.2. Float (float)
Definition: Represents real numbers that contain a decimal point. Used
for precise calculations with fractions.

• Characteristics:

• Includes numbers with a decimal point or written in scientific
notation.

2.3.2.3. Complex (complex)
Definition: Represents complex numbers, which consist of a real part
and an imaginary part. The imaginary part is denoted with a j.

Characteristics:

• Real and imaginary parts are stored as floats.

• You can access the real and imaginary parts using .real and .imag
attributes.

Summary of Numeric Data Types

Example Demonstration in Python:

Integer

a = 42

print(f"{a} is of type {type(a)}") # Output: 42 is of type <class 'int'>

Float

b = 3.14159

print(f"{b} is of type {type(b)}") # Output: 3.14159 is of type <class 'float'>

Complex

c = 2 + 5j

print(f"{c} is of type {type(c)}") # Output: (2+5j) is of type <class 'complex'>

print(f"Real part: {c.real}, Imaginary part: {c.imag}") # Output: Real part: 2.0, Imaginary part: 5.0

Data types summary

Formative Assessment 2

Practical Assignment
https://drive.google.com/file/d/1RPdmUZMHPBZmZAK9ecQsWmAjLBQkaEWe/view?usp=sharing

https://drive.google.com/file/d/1RPdmUZMHPBZmZAK9ecQsWmAjLBQkaEWe/view?usp=sharing

