January 30, 2025

ITLPA701: PY THON AND FUNDAMENTALS OF Al

LEARNING UNIT 2-DEVELOP PYTHON CONCEPT

Mr. Etienne NTAMBARA
ntambaraienne94@agmail.com

Assistant Lecturer in ICT Department
Rwanda Polytechnic, IPRC-HUYE
Homepage: https://94etienne.github.io/profile/

Learning hours: 9

mailto:ntambaraienne94@gmail.com
https://94etienne.github.io/profile/

Learning Outcomes:

e 2.1. Writing Python syntax
e 2.3. Perform declaration
e 2.4. Defferentiate data type

* Formative assessment 1: https://forms.gle/yrbyxPWweQqgV9ufYA

https://forms.gle/yrbyxPWweQqV9ufYA

* The Python syntax defines a set of rules that are used to create Python
statements while writing a Python Program.

Example :

X=5

Age = 60

Name = “MY NAME”

* X, y=8,9

X=7,Y=10=>Wrong, float area = 9.0 => wrong

* The Python Programming Language Syntax has many similarities to Perl, C, and
Java Programming Languages.

* However, there are some definite differences between the languages.
* Python extension is .py

2.1.2. Use command line

* Let us execute a Python "Hello, World!" Programs in different modes
of programming

¢ 2.1.2.1. Python modes
* 1) Interactive Mode Programming

|

fPython 3.11.4 (tags/v3.11.4:d2348ef, Jun 7 2023, ©5:45:37) [MSC v.1934 64 bit (AMDE4)] on win3z2
Type "help”, "copyright", "credits" or "license" for more information.

»»» "HELLO WORLD!®

"HELLO WORLD!®

»»> print{'HELLO WORLD!"}

JHELLO WORLD!

2) Script Mode Programming

* We can invoke the Python interpreter with a script parameter which
begins the execution of the script and continues until the script is
finished. When the script is finished, the interpreter is no longer
active.

* Let us write a simple Python program in a script which is simple text
file. Python files have extension .py.

* Type the following source code in a test.py file:

PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practice> python test.py
Hello, World!
PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practice» I

2.1.2.2 Compilation and execution

* In python compilation and execution are done whenever you run
python program

* In terminal or command prompt: Python3 simple_script.py OR
Python simple_script.py

2.1.2.2 Compilation and execution

* In GUI (pycharm)

File Edit Selection WView Go Run - 2 practice

EXPLORER

~ PRACTICE
circle.ipynb
B employee_dataset.csv = input("Enter your name: ")
identification_of_problem.ipynb
LTE S Al age = int(input("Enter ¥y
test.py

unit1.py
future_age = age + 2E1

print{f"Hello {name}! 8 year you {future_agel} years old."}

PROBLEMS {15 OUTPUT UG COMSOLE TERMIMAL PORTS S5PELL CHECKER Python —+ ~ [1] Tif

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practice> & C:/Users/Etienne/AppData/Local/Programs/Python/Python311/python.exe

Enter your name:

2.1.2.3 Save python project in VSCODE

e Go to file
e SAVE AS

e Or press ctrl + s

Indentation refers to the spaces at the beginning of a code line. Where
in other programming languages the indentation in code is for
readability only, the indentation in Python is very important. Python
uses indentation to indicate a block of code.

2.1.2.4 Indentation

[Statement Code block 1 begins
if condition: Code block 1 continues
if condition: How \','.‘_:"I'l'_""‘_’_:'j:"""" Code block 2 begins
Statement | ST Code block 3 begins
else: Code block 2 continues
Statement Code block 3 continues
Statement Code block 1 continues

Python programming provides no braces to indicate blocks of code for class and function definitions or
flow control. Blocks of code are denoted by line indentation, which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements within the block must be indented the
same amount. For example:

if True:

print (" True')

else:

print ("False')

2.1.2.4 Indentation

* However, the following block generates an error:

if True:

print (""Answer'")

print (""True')

else:
print (""Answer'")

print (""False')

Thus, in Python all the continuous lines indented with same number of spaces would form a block.

2.1.2.5 Python Reserved Words

2.1.2.5 Python Reserved Words
The following list shows the Python keywords. These are reserved words and you cannot use them as
constant or variable or any other identifier names. All the Python keywords contain lowercase letters only.

and as assert
break class continue
def del elif
else except False
finally for from
global if import
in is lambda
None nonlocal not

or pass raise
return True try
while with yield

* Python comments are programmer-readable explanation or
annotations in the Python source code.

* They are added with the purpose of making the source code easier
for humans to understand, and are ignored by Python interpreter.

 Comments enhance the readability of the code and help the
programmers to understand the code very carefully.

* Just like most modern languages, Python supports single-line (or end-
of-line) and multi-line (block) comments.

 Python comments are very much similar to the comments available
in PHP, BASH and Perl Programming languages.

* There are 2 types of comments available in Python
* Single line Comments

* Multiline Comments

e 2.1.3.1. Single Line Comments

* A hash sign (#) that is not inside a string literal begins a comment. All
characters after the # and up to the end of the physical line are part
of the comment and the Python interpreter ignores them

* Following is an example of a single line comment in Python: #
* # This is a single line comment in python

e print ("Hello, World!")

* This produces the following result: Hello, World!

* You can type a comment on the same line after a statement or
expression.

* name = "Madisetti" # This is again comment

* Python does not provide a direct way to comment multiple line. You
can comment multiple lines as follows:

* Following triple-quoted string is also ignored by Python interpreter
and can be used as a multiline comments

o Taking user input for name
This is a comment. 5
. Taking user input for age
This is a comment, too.
[m =1

Adding 28 to the entered a

This is a comment, too. - .)
Displaying the result

| said that already.

Learning Outcome 2.2: Perform declaration

2.2.1. Definition of Key terms

 Declaration
e Variables

* Python variables are the reserved memory locations used to store
values with in a Python Program.

* This means that when you create a variable you reserve some space
in the memory.

* Based on the data type of a variable, Python interpreter allocates
memory and decides what can be stored in the reserved memory.

* Therefore, by assigning different data types to Python variables, you
can store integers, decimals or characters in these variables.

* Python variables do not need explicit declaration to reserve memory
space or you can say to create a variable.

* A Python variable is created automatically when you assign a value to
it. The equal sign (=) is used to assign values to variables.

2.2.2. Assigning values

* Single value
* Multiple values

2.2.2.1. Single value assignment

* The operand to the left of the = operator is the name of the variable
and the operand to the right of the = operator is the value stored in
the variable. For example:

x =75
name = "John"

print{x)
print{name)

TERMIMAL PORTS

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Pytheon‘\practicelunit2» python assigning values.py
L

John

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practice\unit2» I

2.2.2.2. Multiple value assighment

* Multiple value assignment in Python allows you to assign values to
multiple variables in a single line. This feature simplifies code and
makes assighments more concise and readable.

* Example 1: Assigning Values to Multiple Variables

multiple_vanables.py > ...

X, ¥, Z =18, 28, 38

print({x)

print(y)

print{z)
7

TERMINAL PORTS

PS D:\RP_TEACHING J0B\teaching notes etienne\Python‘\practicelunit2> python multiple wvariables.py
18
28
308

PS5 D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practicel\unit2>» I

2.2.2.2. Multiple value assighment

* Python allows you to assign a single value to several variables
simultaneously which means you can create multiple variables at a
time.

* Example 2: Assigning the Same Value to Multiple Variables:

a=>b=c= 188
print{a)

print({b)
print{c)

TERMIMAL

PS D:\RP_TEACHING JOB\teaching notes etienne\Python‘\practicelunit2> python multiple wvariables.py
188

186
18
PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practicel\unit2>» I

2.2.2.2. Multiple value assighment

* Example 3: Swapping Variables:

X, ¥ =

X, ¥ =

print(x)
print{y)

COMSOLE TERMIMAL

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python‘\practicelunit2> python multiple variables.py
18

5
PS D:\RP_TEACHING 10B‘\teaching notes etienne‘\Python‘\practice\unit2>»

2.2.2.2. Multiple value assighment

* Example 4:

Using Unpacking with Lists or Tuples:

values = (1, 2, 3)
a, b, c = values

print(a)
print({b}
print{c)

TERMINAL

» python multiple variables.py

2.2.2.2. Multiple value assighment

* Example 5: Ignoring Certain Values:

print{x)
print{z)

MSOLE TERMIMAL

D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practicelunit2> python multiple variables.py

D:\RP_TEACHING JOB\teaching notes etienne\Python\practice\unit2>

Above examples shows the different ways or methods of handling
multiple value assignments in Python.

 Example: x,y, z=10, 20, 30
e This assigns individual values to multiple variables in one line.

e Example:a=b=c=100
* This assigns the same value to all the specified variables.

* Example: x,y =y, X
* This swaps the values of two variables without needing a temporary variable.

« Example:a, b, c=(1, 2, 3)
* Assigns elements of a tuple or list to variables directly.

 Example: x, , z=(10, 20, 30)
 The underscore _is used to ignore certain values during unpacking.

Every Python variable should have a unigue name like a, b, c. A variable name
can be meaningful like

color, age, name etc. There are certain rules which should be taken care while
naming a Python variable:

i. A variable name must start with a letter or the underscore character

ii. A variable name cannot start with a number or any special character like
S, (, * % etc.

iii. A variable name can only contain alpha-numeric characters and
underscores (A-z, 0-9, and)

iv. Python variable names are case-sensitive which means Name and NAME
are two different variables in Python.

v. Python reserved keywords cannot be used naming the variable.

valid_wvanable_names.py > ...

name
age

_person = ”&1ic51

employee id = 181
total score 2825 = 95
print{name)

print{age)

print{_ person)
print{employee id)
print{total score_ 2825)

— =
L LT

CONSE TERMIMNAL : SPELL CHECKER

PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practice‘\unit2> python valid variable names.py
John

25

Alice

1e1

a5

PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practice‘unit2:» D

Examples of Invalid Variable Names

invalid_variable_names.py > ..

name "Error”

first-name =

case_sensintive.py 2 ...
Name = "Alice”
name = "Bob"

print{Name)
print({name)

PROELEMS OUTPUT EBUG CONSOLE TERMINAL

PS5 D:\RP_TEACHING JOB\teaching notes etienne\Python\practice‘\unit2> python case sensintive.py
Alice

Bob

PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practice\unit2> ||

* Always start a variable name with a letter or underscore.

* Avoid starting variable names with numbers or special characters.

e Use only alphanumeric characters and underscores in variable names.
* Remember that Python is case-sensitive.

* Avoid reserved keywords as variable names

2.2.3. Types of variables

* Local
* Global
* Global keywords

2.2.3.1. Python Local Variable

* Python Local Variables are defined inside a function. We can not
access variable outside the function.

* Example 1:

local_variablepy » ...

sum(a,b):
sum = a+b
return sum
a = int(input(”Enter num 1:"))
b = int(input("Enter num 1:™))
result = sum{a,b)
print(f"sum of {a} and {b} is {result}")

TERMINAL

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practice\unit2> python local_variable.py
Enter num 1: 5

Enter num 1:6

Sum of 5 and 6 is 11

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python‘\practice\unit2»

2.2.3.1. Python Local Variable

local vanable.py > ...

* Example 2

compute area(length, width):

area = length * width
return area

length = float(input(“Enter the length of the rectangle:
width = float(input("Enter the width of the rectangl

area = compute area(length, width)

} square units™)}
28

PROBLEMS TP EBUG NSOL TERMIMAL PORTS SPELL CHECKER

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practicelunit2» python local variable.py
Enter the length of the rectangle: 38

Enter the width of the rectangle: 3

The area of the rectangle is: 98.8 square units

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practice\unit2: I

* A local variable is created when the function is called and destroyed
once the function execution is completed.

* It cannot be accessed or modified outside its defining function.

* Local variables are useful for temporary or intermediate calculations
within a function.

2.2.3.2. Python Global Variable

* Any variable created outside a function can be accessed within any
function and so they have global scope.

* Following is an example of global variables:

global_vanable.py > ...
x = 18
y = 28
sumi}:
SUm = X + ¥

return sum

12
print{f"Sum of {x} and {y} is

TERMIMAL

PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practice\unit2> python global wariable.py
Sum of 18 and 28 is = 38
PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python‘\practicel\unit2> D

2.2.3.2 Global keywords

* The global keyword in Python is used to modify a variable outside the
current function's scope, allowing functions to update global

variables.

X = 18

def update x():
global x
X = 20

update_x()
print(x)

Key Points:

e Without global, x inside the function would be treated as a local variable.

e Using global allows functions to modify variables defined outside their local scope.

= Python Data Types are used to define the type
of a variable.

= |t defines what type of data we are going to
store In a variable. The data stored In memory
can be of many types.

= For example, a person's age Is stored as a
numeric value and his or her address Is stored
as alphanumeric characters

2.3.1. Define build-in data type

* Python has various built-in data types:
1. Text

Numeric

Sequence

Mapping

String

o Uk W

Booleans

2.3.1.1. Text

* This includes strings in Python, which are used to store textual data.
Strings can be enclosed in single, double, or triple quotes.

stingl.py » ...
text = "Hello, Python!"
print{text)

print{f"My Data type is:
a |

TERMIMAL

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practice\unit2» python stringl.py
Hello, Python!

My Data type is: <class 'str'>

PS D:\RP TEACHING JOB\teaching notes etienne‘\Python\practice\unit2: D

2.3.1.2. Numeric

Numeric data types represent numbers. Python has three main numeric types:
* int: Integer values (e.g., 10, -5)

* float: Decimal numbers (e.g., 10.5, -0.99)

* complex: Numbers with a real and imaginary part (e.g., 2+3j)

numeric.py 2 ...
integer num = 42
float_num = 3.14
complex_num = 1 + 2

print(type(integer num))

print(type(float_num))
print(type(complex num))

OUTPLIT DEBUG COMSOLE TERMIMAL

PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practice\unit2> python numeric.py
<class 'int'>

<class 'float’»

<class ‘complex'»

PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practice\unit2>

Sequence types are used to store multiple values in an ordered manner. Common
sequence types include:

= |ist: Mutable, ordered collection of items.
= tuple: Immutable, ordered collection of items.

= range: Sequence of numbers generated lazily.

2.3.1.3. Sequence

Example sequence.py > ..

1 print("----" * 18)

my list = [1, 2, 3]
print{"List:",my_1ist)
print{type(my 1ist))
print("----" * 18)

my tuple = (1, 2, 2)
print{"Tuple:" ,my_ tuple)
print{type({my tuple)})
print(”"----" * 18)

my range = range(l, 5)
print{"Range:" ,my_ range)
print{type(my_ range))
print(”"----" * 18)

—— —
L9 At L

= ==
LT

ISOLE TERMIMNAL PORTS SPELL CHECKER

List: [1, 2, 3]
<class "list'>»
Tuple: (1, 2, 3)
<class "tuple’>»
Range: range(l, 5)
<class "range’>»

PS D:\RP_TEACHING_JOB\teaching notes etienne\Python\practice\unit2> [

2.3.1.4. Mapping

A mapping type in Python is a collection of key-value pairs. The most common
mapping type is a dictionary.

Example:

mapping.py > ..
my dict = {"name”: "Alice”,
2 print{"Mapping: ",my dict)
print(type(my dict))

MSOLE TERMIMAL

PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practice\unit2> python mapping.py
Mapping: {'name’': "Alice’, 'age': 25}

<class ‘dict’>

PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practice\unit2>

A String is a data structure in Python that represents a sequence of characters. It is
an immutable data type, meaning that once you have created a string, you cannot
change it. Strings are used widely in many different applications, such as storing
and manipulating text data, representing names, addresses, and other types of
data that can be represented as text. Python Strings are identified as a contiguous
set of characters represented in the quotation marks. Python allows for either
pairs of single or double quotes.

Creating a String in Python

Strings in Python can be created using single quotes or double quotes or even triple
quotes. Let us see how

we can define a string in Python.

2.3.1.5. 5tring

Example: In this example, we will demonstrate different ways to create a Python String. We will
create a string using single quotes (‘ ‘), double quotes (” “), and triple double quotes (“”” “””). The
triple quotes can be used to declare multiline strings in

stning2.py » ...

stringl = 'Hello, Python!"’
print{stringl)

string2 = "Hello, Python!"”
print{string2)

string3d = """Hello,
This is a multiline string in Python!"""
print{string3)

TERMINAL

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practice\unit2» python string2.py
Hello, Python!

Hello, Python!

Hellao,

This is a multiline string in Python!

PS D:\RP_TEACHING J]OB\teaching notes etienne‘\Python\practice\unit2> I

Python strings are immutable, meaning their
content cannot be directly modified. However, you
can achieve operations like insert, update, and
delete by creating a new string based on the
desired changes. Below are examples
demonstrating these operations.

String Operations: Insert, Update, and Delete in Python

Python strings are immutable, meaning their
content cannot be directly modified. However, you
can achieve operations like insert, update, and
delete by creating a new string based on the
desired changes.

Below are examples demonstrating these
operations.

Inserting a Substring

To insert a substring at a specific position in a string:
original[:position]:
This slices the string from the beginning up to (but not including) the index position.
For example, if original = "Hello Python!" and position = 6, original[:6] gives "Hello ".
"World ":
This is the string you are inserting. It will be added between the slices of the original string.
original[position:]:
This slices the string from the index position to the end of the string.
Using the same example, original[6:] gives "Python!". insert_string.py > ...
original = "Hello Python!”
position = 6

new string = original[:position] + "World " + original[position:]
print{new_string)

MSOLE TERMINAL

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practicel\unit2> python insert string.py
Hello World Python!

PS D:\RP_TEACHING J]OB\teaching notes etienne‘\Python\practice\unit2: D

Updating a String

To update part of a string, replace the desired
portion:

original = "Hello World!"

updated string = original.replace("World"”, "Python™)
print{updated string)

MSOLE TERMIMAL

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practice\unit2> python update string.py
Hello Python!
PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practicel\unit2> I

*To delete a substring, remove it by slicing:

delete stnng.py > ...
original = "Hello World!™

substring to remove = "World”
new string = original.replace(substring to remove,

new string = new string.strip()
print{new string)

DEBUG CONSOLE TERMIMAL

PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practice\unit2» python delete string.py
Hello !
PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practice\unit2» I

* Python boolean type is one of built-in data types which represents one of the two values either
True or False.

* Python bool() function allows you to evaluate the value of any expression and returns either True
or False based on the expression.

Evaluating Numbers:
Evaluating Strings:

Evaluating Lists, Tuples, and Other Containers:

B W N e

Evaluating Logical Expressions

1. Evaluating Numbers

an_numbers.py

print(_
print{bool(

print({bool(@))

DEBUG CONSOLE TERMINAL

PS D:\RP_TEACHING J0B\teaching notes etiennel\Python\practicel\unit2» python boolean numbers.py
True

True

False

PS D:\RP_TEACHING 10B‘\teaching notes etienne‘\Python‘\practice\unit2>»

2. Evaluating Strings

boolean_string.py

TERMINAL

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practice\unit2» python boolean string.py
True

True

False

PS D:\RP_TEACHING JOB\teaching notes etienne‘\Python\practice\unit2>

3. Evaluating Lists, Tuples, and Other Containers:

boolean_tuples.py

print{bool
print{bool(

print{bool|
print{bool(

TERMINAL

PS D:\RP_TEACHING JOB\teaching
True
True
False
False

PS5 D:\RP_TEACHING JOB‘\teaching notes etienne‘\Python\practice\unit2>» I

notes etienne\Python\practicelunit2» python boolean tuples.py

4. Evaluating Logical Expressions:

print{18 >
print(3 ==

print(
print(

DEBUMG COMSOLE TERMIMAL

PS D:\RP_TEACHING JOB\teaching notes etienne‘Python‘\practicelunit2» python boolean logical.py
True

False

False

True

PS D:\RP_TEACHING JOB\teaching notes etienne\Python\practicel\unit2> I

* The boolean type is a fundamental part of Python, used in various
operations and decision-making processes. The bool() function can
help determine whether a value or expression is logically True or False

Python provides three main numeric data types to handle different
kinds of numbers:

* Integer (int)
* Float (float)
* Complex (complex)

Definition: Represents whole numbers (positive, negative, or zero)
without any fractional or decimal component.

e Characteristics:
* No decimal point.

e Can be arbitrarily large in Python (unlike fixed-size integers in some
other languages).

Examples:

python

Definition: Represents real numbers that contain a decimal point. Used
for precise calculations with fractions.

 Characteristics:

* Includes numbers with a decimal point or written in scientific
notation.

+ (Characteristics:

Examples:
s Includes numbers with a decimal point or written in scientific notation.
o) pythan
s Example of scientific notation:
python ¥ Copy ¥ Edit
b 1a.
num = 1.23e4 y = -3.14

(num)

(x3)

Definition: Represents complex numbers, which consist of a real part
and an imaginary part. The imaginary part is denoted with aj.

Characteristics:
 Real and imaginary parts are stored as floats.

* You can access the real and imaginary parts using .real and .imag
attributes.

Characteristics:

* FReal and imaginary parts are stored as floats.

Examples:
* You can access the real and imaginary parts using .real and .imag attributes.
python
python @ Copy ¥ Edit
comp =5 + 6] compl = 2 + 3]
(comp.real) comp2 = -1 - 4j

(comp.imag) . . o
i P E. ((compl))

Summary of Numeric Data Types

Summary of Numeric Data Types

Data Type Example Values Use Case
int 18, -5, @ Counting or indexing without decimals.
float 1.14, -2.5, 8.8 Precise calculations with fractional parts.

complex 243j, -1-4] Mathematical operations with imaginary numbers,

Integer
a=42
print(f"{a} is of type {type(a)}") # Output: 42 is of type <class 'int'>

Float
b=3.14159

print(f"{b} is of type {type(b)}") # Output: 3.14159 is of type <class 'float'>

Complex

c=2+5j

print(f"{c} is of type {type(c)}") # Output: (2+5j) is of type <class 'complex'>

print(f"Real part: {c.real}, Imaginary part: {c.imag}") # Output: Real part: 2.0, Imaginary part: 5.0

Data types summary

Data Types Examples

= 15

apple

= 3.14
True, False
["apple", "banana", "cherry"]
("apple", "banana", "cherry")
range (6)
{ "name" "John", "age" 36}
{"apple", "banana", '"cherry"}
frozenset ({"apple"”, "banana",

"cherry"})

string
float
complex
bool
list
tuple
range
dict
set

frozenset

Formative Assessment 2

Practical Assignment

https://drive.google.com/file/d/1RPdMUZMHPBZmZAK9ecQsWmAjLBQkaEWe/view?usp=sharing

https://drive.google.com/file/d/1RPdmUZMHPBZmZAK9ecQsWmAjLBQkaEWe/view?usp=sharing

