
ITLPA701: PYTHON AND FUNDAMENTALS OF AI

Mr. Etienne NTAMBARA

ntambaraienne94@gmail.com

Assistant Lecturer in ICT Department

Rwanda Polytechnic, IPRC-HUYE

Homepage: https://94etienne.github.io/profile/

LEARNING UNIT 4–DEVELOP PYTHON SCRIPT

Learning hours: 15

February 9, 2025

mailto:ntambaraienne94@gmail.com
https://94etienne.github.io/profile/

Learning Outcome 4.1: Perform File handling

File handling allows programs to open, read, write, and delete files on
a system.

Before reading a file, ensure it exists and that you have the necessary
read permissions.

• Below, we will explore these operations with clear examples in
Python.

4.1.1. Practice to read file

4.1.1.1 Open file

• In Python, use the open() function to open a file. The default mode is
"r" (read mode).

Example: file = open("example.txt", "r") # Opens the file in read mode

4.1.1.1 Reading a File permission

Once the file is opened, you can read its contents using different methods:

Other ways to read a file

1. Read one line at a time:

2. Read file as a list of lines:

4.1.2. Practice to write/create file
You can create and write to a file using "w" (write mode) or "a" (append
mode).

1. Creating a New File

If the file does not exist, "w" mode creates a new file.

2. Writing to an Existing File

Overwrite content ("w" mode)

3. Append new content ("a" mode)

4.1.3. Pactice to delete file
Deleting Files and Folders: Python provides the os and shutil modules to
handle file deletion.

1. Removing a File: Use os.remove() to delete a file:

2. Checking if a File Exists:

Before deleting a file, check if it exists:

3. Deleting a Folder
1. Remove an empty folder using os.rmdir()

2. Remove a folder with files using shutil.rmtree()

Learning Outcome 4.2: Determine Python library

• When working with data science, machine learning, and numerical
computing in Python, certain libraries make tasks easier and more
efficient.

• The most important libraries:

1. Numpy

2. Pandas

3. MultplotLib

4. SciPy

5. Scikit-Learn

1. Numpy
Purpose

NumPy is a fundamental library for numerical computing in Python. It
provides support for large, multi-dimensional arrays and matrices,
along with a collection of mathematical functions to operate on these
arrays efficiently.

Features:

✓ Supports N-dimensional arrays (ndarray).

✓ Provides mathematical and statistical functions.

✓ Used for linear algebra operations.

✓ Efficient memory handling.

1. Numpy
Interact with numpy need to install it via cmd or jupyter notebook by:

Pip install numpy

Example of numpy python code:

2. Pandas (Data Manipulation and Analysis)
Purpose:

Pandas is used for data manipulation and analysis. It provides data
structures like Series (1D) and DataFrame (2D) to handle structured
data easily.

Features:

 DataFrame: A table-like structure to store and manipulate data.

 Handles missing values easily.

 Supports filtering, grouping, and merging datasets.

 Works well with NumPy and visualization libraries.

2. Pandas (Data Manipulation and Analysis)
Example: Creating and manipulating a DataFrame

3. MultplotLib
• Purpose:

Matplotlib is a library for creating static, animated, and interactive
visualizations in Python.

• Features:

• Allows customization of plots.

• Supports different chart types (line, bar, scatter, histogram, etc.).

• Works well with NumPy and Pandas.

3. MultplotLib
• Example: Plotting a simple line graph

4. SciPy (Scientific Computing)
Purpose:
SciPy builds on NumPy and provides additional functionalities for
scientific computing, including optimization, integration, statistics, and
signal processing.

Features:

• Supports optimization (finding minima/maxima).

• Provides statistical functions.

• Includes numerical integration and differential equations solvers.

4. SciPy (Scientific Computing)
• Example: Finding the minimum of a function using SciPy

5. Scikit-Learn (Machine Learning Library)

Purpose:
Scikit-Learn is a powerful library for machine learning. It provides tools
for supervised and unsupervised learning, model selection, and
evaluation.

Features:

• Supports classification, regression, and clustering.

• Provides preprocessing and feature selection tools.

• Works well with NumPy and Pandas

Example: Training a simple classification model

Learning Outcome 4.3: Interact with database

When working with MySQL in Python, we use the mysql-connector-
python library to establish connections and perform database
operations.

• Below are the steps to interact with MySQL using Python, along with
examples.

Dounload MSQL: MySQL :: Download MySQL Installer

Step by step: https://youtu.be/uj4OYk5nKCg?si=RLzrV1LtJz2Zo4xu

https://dev.mysql.com/downloads/installer/
https://youtu.be/uj4OYk5nKCg?si=RLzrV1LtJz2Zo4xu

4.3.1 Python Mysql commands

1. Install Driver

Before connecting Python to MySQL, we need to install the MySQL
Connector.

2. Test MySQL Connector

Once installed, we can test if the MySQL connector is working.

If the script runs without errors, the connector is working fine.

3. Create Connection

To interact with a MySQL database, we first need to establish a
connection.

4. Create Database

We can create a new database using SQL commands in Python.

5. Create Table

After creating the database, we create tables to store information.

6. Insert Data

We insert records into the table using the INSERT INTO statement.

7. Select Data

To fetch data from the database, we use the SELECT statement.

8. Delete Data

We can remove specific records using the DELETE statement.

STOPPED HERE

9. Where Condition

To filter records, we use the WHERE clause.

10. Order By

To sort results, we use the ORDER BY clause.

11. Drop Table

To delete a table completely, we use DROP TABLE.

12. Update Data

To modify existing records, we use the UPDATE statement

12. Update Data

13. Limit Results

To restrict the number of rows returned, we use LIMIT.

14. Join Tables

To combine data from multiple tables, we use the JOIN clause.

14. Join Tables

Conclusion

These Python MySQL commands allow us to interact with a database
efficiently. By mastering these operations, students can develop
database-driven applications in Python.

4.3.2 MongoDB

MongoDB is a NoSQL "Not Only SQL" database that stores data in
JSON-like documents with schema flexibility, allowing for dynamic and
scalable data management. Unlike traditional relational databases,
MongoDB uses collections instead of tables and documents instead of
rows.

1. Creating a Database

MongoDB is a NoSQL "Not Only SQL" database that stores data in
JSON-like documents with schema flexibility, allowing for dynamic and
scalable data management. Unlike traditional relational databases,
MongoDB uses collections instead of tables and documents instead of
rows.

Python provides the pymongo library to interact with MongoDB.

Installing pymongo

To work with MongoDB in Python, install the pymongo package:

Connecting to MongoDB

Before performing operations, we need to establish a connection to
MongoDB.

1. Create a Database

MongoDB automatically creates a database when a collection (table) is
added.

2. Create a Collection (Table)

In MongoDB, a collection is equivalent to a table in relational
databases.

3. Insert Data into Collection

MongoDB stores data in JSON-like documents.

Now we can access
all our db and

collection from
mongoDb app

4. Select (Retrieve) Data

Retrieve documents from a collection.

5. Delete Data

Delete specific records using conditions.

6. Using Where Condition

Query documents using conditions.

7. Order By

Sort the results in ascending or descending order.

8. Drop a Collection (Table)

Remove a collection from the database. If you have only one collection
then once you drop it, it will automatically drop its database.

9. Update Data

Modify existing records.

10. Limit Results

Restrict the number of documents returned.

11. Join in MongoDB
MongoDB does not support SQL-style joins natively, but it provides
$lookup for joining collections.

Summary

Formative Assessment 2. Next class

	Slide 1: ITLPA701: PYTHON AND FUNDAMENTALS OF AI
	Slide 2: Learning Outcome 4.1: Perform File handling
	Slide 3: 4.1.1.1 Open file
	Slide 4: 4.1.1.1 Reading a File permission
	Slide 5: Other ways to read a file
	Slide 6: 4.1.2. Practice to write/create file
	Slide 7: 4.1.3. Pactice to delete file
	Slide 8: 3. Deleting a Folder
	Slide 9: Learning Outcome 4.2: Determine Python library
	Slide 10: 1. Numpy
	Slide 11: 1. Numpy
	Slide 12: 2. Pandas (Data Manipulation and Analysis)
	Slide 13: 2. Pandas (Data Manipulation and Analysis)
	Slide 14: 3. MultplotLib
	Slide 15: 3. MultplotLib
	Slide 16: 4. SciPy (Scientific Computing)
	Slide 17: 4. SciPy (Scientific Computing)
	Slide 18: 5. Scikit-Learn (Machine Learning Library)
	Slide 19: Example: Training a simple classification model
	Slide 20: Learning Outcome 4.3: Interact with database
	Slide 21: 4.3.1 Python Mysql commands
	Slide 22: 2. Test MySQL Connector
	Slide 23: 3. Create Connection
	Slide 24: 4. Create Database
	Slide 25: 5. Create Table
	Slide 26: 6. Insert Data
	Slide 27: 7. Select Data
	Slide 28: 8. Delete Data
	Slide 29: 9. Where Condition
	Slide 30: 10. Order By
	Slide 31: 11. Drop Table
	Slide 32: 12. Update Data
	Slide 33: 12. Update Data
	Slide 34: 13. Limit Results
	Slide 35: 14. Join Tables
	Slide 36: 14. Join Tables
	Slide 37: Conclusion
	Slide 38: 4.3.2 MongoDB
	Slide 39: 1. Creating a Database
	Slide 40: Connecting to MongoDB
	Slide 41
	Slide 42: 1. Create a Database
	Slide 43: 3. Insert Data into Collection
	Slide 44
	Slide 45: 4. Select (Retrieve) Data
	Slide 46: 5. Delete Data
	Slide 47: 6. Using Where Condition
	Slide 48: 7. Order By
	Slide 49: 8. Drop a Collection (Table)
	Slide 50: 9. Update Data
	Slide 51: 10. Limit Results
	Slide 52: 11. Join in MongoDB
	Slide 53: Summary
	Slide 54: Formative Assessment 2. Next class

