
RWANDA POLYTECHNIC
HUYE COLLEGE

ICT DEPARTMENT
ITLPA701: PYTHON AND FUNDAMENTALS OF AI

15 LEARNING HOURS
NTAMBARA Etienne, Assistant Lecturer

February 9, 2025

NTAMBARA Etienne 0783716761 1 2 3 February 9, 2025

1. LEARNING UNIT 5–DEVELOP AI
BASED APPLICATIONS

1.1. Learning Outcome 5.1: Introduce AI

1.1.1. DEFINITIONS OF KEY TERMS

1. WHAT IS AI?

In today’s world, technology is growing very fast, and we
are getting in touch with different new technologies day
by day. One of the booming technologies of computer
science is Artificial Intelligence (AI), which is ready to
create a new revolution in the world by making intelligent
machines. AI is now all around us, currently working with a
variety of subfields, ranging from general to specific, such as
self-driving cars, playing chess, proving theorems, playing
music, painting, etc (Russell & Norvig, 2010).

AI is one of the fascinating and universal fields of computer
science with great scope in the future. AI holds a tendency
to cause a machine to work as a human (McCarthy, 2007).
Artificial Intelligence is composed of two words: Artificial
and Intelligence, where Artificial defines “man-made,” and
intelligence defines “thinking power”; hence AI means “a
man-made thinking power.”

Definition: AI is a branch of computer science by which we
can create intelligent machines that can behave like a human,
think like humans, and make decisions (Russell & Norvig,
2010). AI exists when a machine can have human-based

skills such as learning, reasoning, and solving problems
(Goodfellow et al., 2016). With AI, you do not need to
preprogram a machine to do some work; instead, you can
create a machine with programmed algorithms that can work
with its intelligence. This is the essence of AI (McCarthy,
2007).

2. HISTORY OF AI

The idea of a machine that thinks dates back to ancient
Greece. However, the advent of electronic computing
brought significant milestones in AI development:

• 1950: Alan Turing publishes Computing Machinery

and Intelligence, introducing the Turing Test (Turing,
1950).

• 1956: John McCarthy coins the term Artificial Intelli-

gence at Dartmouth College (McCarthy et al., 1956).

• 1967: Frank Rosenblatt builds the Mark 1 Perceptron,
the first computer-based neural network (Rosenblatt,
1958).

• 1980s: Neural networks using backpropagation be-
come widely used in AI applications (Rumelhart et al.,
1986).

• 1997: IBM’s Deep Blue defeats world chess champion
Garry Kasparov (Hammond, 1997).

Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think, learn, solving problems and make decisions.

Exercise
1. Give one example of application that use AI in Rwanda. 10 marks. 5 minutes

RWASIS
IREMBO
pindo.ai
gpt
deepseek
gemni

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

• 2011: IBM Watson wins against Jeopardy! champions
Ken Jennings and Brad Rutter (Ferrucci, 2012).

• 2015: Baidu’s Minwa supercomputer surpasses human
image recognition accuracy (Schmidhuber, 2015).

• 2016: DeepMind’s AlphaGo defeats world champion
Go player Lee Sodol (Silver et al., 2016).

3. BENEFITS OF AI

1. Automation: AI automates repetitive tasks, increasing
efficiency and productivity (Russell & Norvig, 2020).

2. Smart Decision Making: AI analyzes trends, delivers
data, and helps in informed decision-making (Goodfel-
low et al., 2016).

3. Enhanced Customer Experience: AI chatbots and
NLP solutions improve customer support services
(Hirschberg & Manning, 2015).

4. Medical Advances: AI helps in remote patient moni-
toring and disease prediction (Topol, 2019).

5. Innovation: AI enables new products, services, and
advancements in robotics and NLP (Furst, 2018).

6. Accessibility: AI aids disabled individuals by enhanc-
ing mobility and communication (Koch & Marschollek,
2018).

7. Business Continuity: AI assists in business forecast-
ing and risk management (?).

8. Managing Repetitive Tasks: AI-driven RPA tools
reduce manual labor in business processes (van der
Aalst & Song, 2020).

9. Minimizing Errors: AI reduces human errors in data
processing and entry (Marcus, 2020).

10. Increased Business Efficiency: AI ensures 24/7 ser-
vice availability and performance consistency (Bryn-
jolfsson & Rock, 2018).

1.1.2. TYPES OF AI

1. Weak AI

Narrow AI, also known as Weak AI, is designed to perform
specific tasks within a limited domain. Examples include:

• Virtual assistants (e.g., Siri, Alexa) (Russell & Norvig,
2020).

• Recommendation systems (e.g., Netflix, Amazon)
(Ricci & Rokach, 2011).

• Image recognition software (Yann LeCun & Hinton,
2015).

2 Strong AI

Strong AI consists of Artificial General Intelligence (AGI)
and Artificial Super Intelligence (ASI). AGI refers to AI sys-
tems possessing human-like intelligence, capable of solving
problems, learning, and planning for the future (Goertzel &
Pennachin, 2014). ASI surpasses human intelligence and
remains a theoretical concept (Bostrom, 2014).

1.1.3. ARTIFICIAL INTELLIGENCE (AI) IN REAL LIFE

Artificial Intelligence (AI) refers to the simulation of human
intelligence in machines that are programmed to think, learn,
and make decisions. Below are some real-life examples of
AI:

1. Self-Driving Cars

Self-driving cars, such as those developed by Tesla and
Waymo, use AI algorithms to perceive their environment,
make decisions, and navigate without human intervention.
These cars rely on sensors, cameras, and machine learning
models to detect obstacles, interpret traffic signals, and plan
routes.

2. Navigation Systems

Navigation systems like Google Maps and Waze use AI
to analyze real-time traffic data, predict congestion, and
suggest the fastest routes. Machine learning algorithms
process vast amounts of data from users and sensors to
optimize travel time.

3. Chatbots

AI-powered chatbots, such as ChatGPT and Google Assis-
tant, use Natural Language Processing (NLP) to understand
and respond to user queries. These systems are widely used
in customer service, healthcare, and education to provide

NLP: Natural Language Processing

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

instant support and information.

4. Human vs. Computer Games

AI has demonstrated its capabilities in strategic games like
Chess and Go. For example, Deep Blue (IBM) defeated
world chess champion Garry Kasparov in 1997, and Al-
phaGo (DeepMind) beat world Go champion Lee Sedol
in 2016. These systems use advanced algorithms and rein-
forcement learning to master complex games.

5. Sophia Robot

Sophia, developed by Hanson Robotics, is a humanoid
robot that uses AI to simulate human-like expressions, rec-
ognize faces, and hold conversations. Sophia represents
advancements in robotics and AI integration, showcasing
how machines can mimic human behavior.

6. Turing Machine

The Turing Machine, proposed by Alan Turing, is a the-
oretical model of computation that laid the foundation for
modern computers and AI. While not a physical machine, it
inspired the development of algorithms and computational
models that power AI systems today.

7. Many More Applications

AI is also used in:

• Healthcare: Diagnosing diseases (e.g., IBM Watson
for Oncology).

• Finance: Fraud detection and algorithmic trading.

• E-commerce: Personalized recommendations (e.g.,
Amazon, Netflix).

• Manufacturing: Predictive maintenance and automa-
tion.

1.1.4. THE FUTURE OF ARTIFICIAL INTELLIGENCE (AI)

Artificial Intelligence (AI) is rapidly evolving and is ex-
pected to revolutionize various fields in the future. Below
are some key areas where AI is likely to have a significant
impact:

1. Military Bots

AI-powered military bots, such as autonomous drones and
robotic soldiers, are being developed for surveillance, recon-
naissance, and combat. These systems can reduce human
casualties and enhance strategic decision-making. For exam-
ple, the U.S. Department of Defense is investing in projects
like Project Maven to integrate AI into military operations
(of Defense, 2020).

2. The Perfect Lawyer

AI is poised to transform the legal industry by automating
tasks like document review, legal research, and contract
analysis. Tools like ROSS Intelligence (Intelligence, 2021)
and DoNotPay (DoNotPay, 2022) already assist lawyers and
individuals in navigating legal complexities. In the future,
AI could even predict case outcomes based on historical
data, making it the ”perfect lawyer.”

3. Music

AI is revolutionizing the music industry by composing,
producing, and performing music. Tools like OpenAI’s
Jukedeck (OpenAI, 2020) and Amper Music (Music, 2021)
enable users to create original compositions using AI algo-
rithms. In the future, AI could collaborate with human
artists to push the boundaries of creativity and produce per-
sonalized music for listeners.

4. Business

AI is transforming businesses by optimizing operations,
enhancing customer experiences, and enabling data-driven
decision-making. For example:

• Supply Chain Management: AI predicts demand and
optimizes logistics (Smith, 2022).

• Customer Service: AI-powered chatbots provide 24/7
support (Lee, 2021).

• Marketing: AI analyzes consumer behavior to deliver
personalized campaigns (Brown, 2020).

In the future, AI could automate entire business processes,
making organizations more efficient and competitive.

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

5. Healthcare

AI is set to revolutionize healthcare by improving diagnos-
tics, treatment, and patient care. Examples include:

• Diagnostics: AI systems like IBM Watson Health
analyze medical data to detect diseases early (IBM,
2021).

• Personalized Medicine: AI tailors treatments based
on genetic and clinical data (Johnson, 2022).

• Robotic Surgery: AI-assisted robots perform precise
and minimally invasive surgeries (Williams, 2021).

In the future, AI could enable predictive healthcare, where
diseases are prevented before they occur.

1.2. Learning Outcome 5.2: Implement Machine
Learning

1.2.1. DEFINITION OF KEY TERMS

1. DATA SPLITTING

Definition: Dividing a dataset into subsets (e.g., training,
validation, and test sets) to evaluate the performance of a
machine learning model.

Python Example:

1 from sklearn.datasets import load_iris

2 from sklearn.model_selection import

train_test_split

3

4 # Load the Iris dataset

5 data = load_iris()

6 X, y = data.data, data.target

7

8 # Split into training (70%) and test (30%)

sets

9 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.3,

random_state=42)

10

11 print("Training set size:", X_train.shape

[0])

12 print("Test set size:", X_test.shape[0])

2. NUMERICAL DATA

Definition: Data represented in numbers (e.g., age, temper-
ature, salary).

Python Example:

1 import pandas as pd

2

3 # Example of numerical data

4 data = {’Age’: [25, 30, 35, 40], ’Salary’:

[50000, 60000, 70000, 80000]}

5 df = pd.DataFrame(data)

6 print(df)

3. CATEGORICAL DATA

Definition: Data that represents categories or groups (e.g.,
gender, color, country).

Python Example:

1 import pandas as pd

2

3 # Example of categorical data

4 data = {’Gender’: [’Male’, ’Female’, ’

Female’, ’Male’], ’Country’: [’USA’, ’

Canada’, ’UK’, ’USA’]}

5 df = pd.DataFrame(data)

6 print(df)

4. ORDINAL DATA

Definition: Categorical data with a specific order or ranking
(e.g., education level: high school, bachelor’s, master’s).

Python Example:

1 import pandas as pd

2

3 # Example of ordinal data

4 data = {’Education’: [’High School’, ’

Bachelors’, ’ M a s t e r s ’, ’PhD’]}

5 df = pd.DataFrame(data)

6 print(df)

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

Figure 1. Output.

5. PERCENTILE

Definition: A measure indicating the value below which a
given percentage of observations in a dataset fall.

Python Example:

1 import numpy as np

2

3 # Example of calculating percentiles

4 data = [10, 20, 30, 40, 50, 60, 70, 80, 90,

100]

5 print("25th Percentile:", np.percentile(

data, 25))

6 print("50th Percentile (Median):", np.

percentile(data, 50))

7 print("75th Percentile:", np.percentile(

data, 75))

6. DATA DISTRIBUTION

Definition: The way data points are spread or distributed
across a range (e.g., normal distribution, skewed distribu-
tion).

Python Example:

1 import matplotlib.pyplot as plt

2 import seaborn as sns

3 import numpy as np

4

5 # Generate random data with a normal

distribution

6 data = np.random.normal(0, 1, 1000)

7

8 # Plot the distribution

9 sns.histplot(data, kde=True)

10 plt.title("Normal Distribution")

11 plt.show()

7. ALGORITHM

Definition: A set of rules or steps used to solve a problem
or perform a task (e.g., linear regression, decision trees).

Python Example:

1 from sklearn.linear_model import

LinearRegression

2 import numpy as np

3

4 # Example of a linear regression algorithm

5 X = np.array([[1], [2], [3], [4]])

6 y = np.array([2, 4, 6, 8])

7

8 model = LinearRegression()

9 model.fit(X, y)

10

11 print("Prediction for X=5:", model.predict

([[5]]))

8. MODEL

Definition: The output of a machine learning algorithm
after training on data, used to make predictions.

Python Example:

1 from sklearn.datasets import load_iris

2 from sklearn.tree import

DecisionTreeClassifier

3 from sklearn.model_selection import

train_test_split

4

5 # Load the Iris dataset

6 data = load_iris()

7 X, y = data.data, data.target

8

9 # Split into training and test sets

10 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.3,

random_state=42)

11

12 # Train a decision tree model

13 model = DecisionTreeClassifier()

Classification Algo:
1. Logistic regression
2. Naive Bayes

Regression Algo

1. Linear Regression

Others Works on Both
1. Random Forest
2.Decision tree
3. SVM
4. XGBOOST
5. LightGBM
6. CAT BOOST

STOP HERE

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

14 model.fit(X_train, y_train)

15

16 # Make predictions

17 y_pred = model.predict(X_test)

18 print("Predictions:", y_pred)

9. SCATTER PLOT

Definition: A graphical representation of data points on
a two-dimensional plane, used to visualize relationships
between variables.

Python Example:

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 # Generate random data

5 X = np.random.rand(50)

6 y = 2 * X + np.random.randn(50)

7

8 # Create a scatter plot

9 plt.scatter(X, y)

10 plt.title("Scatter Plot Example")

11 plt.xlabel("X")

12 plt.ylabel("y")

13 plt.show()

10. IMPORTANCE OF MACHINE LEARNING

Definition: Machine learning enables automation, predic-
tion, and decision-making based on data, revolutionizing
industries like healthcare, finance, and technology.

Python Example:

1 from sklearn.datasets import load_iris

2 from sklearn.model_selection import

train_test_split

3 from sklearn.ensemble import

RandomForestClassifier

4 from sklearn.metrics import accuracy_score

5

6 # Load the Iris dataset

7 data = load_iris()

8 X, y = data.data, data.target

9

10 # Split into training and test sets

11 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.3,

random_state=42)

12

13 # Train a Random Forest model

14 model = RandomForestClassifier()

15 model.fit(X_train, y_train)

16

17 # Make predictions

18 y_pred = model.predict(X_test)

19

20 # Evaluate the model

21 accuracy = accuracy_score(y_test, y_pred)

22 print("Model Accuracy:", accuracy)

11. DATA SPLICING

Definition: A technique to split or segment data for analysis
or processing.

Python Example:

1 import pandas as pd

2

3 # Example of data splicing

4 data = {’Values’: [10, 20, 30, 40, 50, 60,

70, 80, 90, 100]}

5 df = pd.DataFrame(data)

6

7 # Splice the first 5 rows

8 spliced_data = df[:5]

9 print("Spliced Data:\n", spliced_data)

1.2.2. DEFINE VARIABLES AND DATA

Working with bellow data-frame as an example

1 # Python Code for Defining Variables

2 import pandas as pd

3 from sklearn.model_selection import

train_test_split

4

5 data = {

6 ’Size’: [1200, 1500, 1800, 2000, 2200],

7 ’Price’: [150000, 200000, 250000,

300000, 350000]

8 }

9 df = pd.DataFrame(data)

10

11 X = df[[’Size’]]

12 y = df[’Price’]

13

14 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.2,

random_state=42)

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

1. Predictor Variable (Independent Variable)

The predictor variable is the input feature used to predict
the output. In this case, the predictor variable is the Size of
the house, which will be used to predict the house price.

1 # Predictor variable (independent variable)

2 X = df[[’Size’]] # Size is the predictor

variable

2. Response Variable (Dependent Variable)

The response variable is the output we aim to predict. In
this case, the response variable is the Price of the house,
which we will predict based on the size.

1 # Response variable (dependent variable)

2 y = df[’Price’] # Price is the response

variable

3. Training Data

Training data is the dataset used to train the ML model. It
includes both predictor and response variables. In this case,
we use the dataset to train the model to learn the relationship
between house size and price.

1 # Split the dataset into training and

testing data

2 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.2,

random_state=42)

4. Testing Data

Testing data is used to evaluate the performance of the
trained model. It is separate from the training data. In
this case, after training the model, we use the testing data to
check how well the model performs on unseen data.

1 # The testing data is used for evaluation

2 # We will use the testing data (X_test) to

predict and evaluate the model

5. Data Scraping

Data scraping involves extracting data from websites or
other sources. In this example, we scrape house sizes and
prices from a website for use in the model.

1 # Data Scraping Example

2 url = "https://example.com/house-prices"

3 response = requests.get(url)

4 soup = BeautifulSoup(response.content, ’

html.parser’)

5

6 # Extract house sizes and prices from the

website

7 house_sizes = []

8 house_prices = []

9

10 for item in soup.find_all(’div’, class_=’

house-item’):

11 size = item.find(’span’, class_=’size’)

.text

12 price = item.find(’span’, class_=’price

’).text

13 house_sizes.append(int(size))

14 house_prices.append(int(price.replace(’

$’, ’’).replace(’,’, ’’)))

15

16 # Create a DataFrame from scraped data

17 scraped_data = pd.DataFrame({’Size’:

house_sizes, ’Price’: house_prices})

1.2.3. MACHINE LEARNING PROCESSES

The ML process (life-cycle) includes defining the objective,
data gathering, preparing data, data exploration, building
the model, model evaluation, and making predictions.

1. Define Objective

The first step is to define the objective of the ML project.

1 # Define the objective

2 objective = "Predict house prices based on

features like size, location, and

number of bedrooms."

3 print("Objective:", objective)

2. Data Gathering

Data gathering involves collecting the necessary data for the
ML model.

1 import pandas as pd

2

3 # Load dataset from a CSV file

4 data = pd.read_csv("house_prices.csv")

5 print("Data Head:")

6 print(data.head())

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

3. Preparing Data

Data preparation involves cleaning and preprocessing the
data.

1 # Handle missing values

2 data = data.dropna()

3

4 # Encode categorical variables

5 data = pd.get_dummies(data, columns=[’

Location’], drop_first=True)

6

7 print("Prepared Data Head:")

8 print(data.head())

4. Data Exploration

Data exploration involves analyzing the dataset to under-
stand its structure.

1 import matplotlib.pyplot as plt

2

3 # Scatter plot of Size vs Price

4 plt.scatter(data[’Size’], data[’Price’])

5 plt.xlabel("Size (sq ft)")

6 plt.ylabel("Price ($)")

7 plt.title("House Size vs Price")

8 plt.show()

5. Building Model

Building the model involves selecting an algorithm and
training it.

1 from sklearn.linear_model import

LinearRegression

2 from sklearn.model_selection import

train_test_split

3

4 # Define predictor (X) and response (y)

variables

5 X = data[[’Size’, ’Bedrooms’, ’

Location_Urban’]]

6 y = data[’Price’]

7

8 # Split data into training and testing sets

9 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.2,

random_state=42)

10

11 # Build and train the model

12 model = LinearRegression()

13 model.fit(X_train, y_train)

14

15 print("Model trained successfully!")

6. Model Evaluation

Model evaluation involves assessing the model’s perfor-
mance.

1 from sklearn.metrics import

mean_squared_error, r2_score

2

3 # Make predictions on the testing data

4 y_pred = model.predict(X_test)

5

6 # Evaluate the model

7 mse = mean_squared_error(y_test, y_pred)

8 r2 = r2_score(y_test, y_pred)

9

10 print(f"Mean Squared Error: {mse}")

11 print(f"R-squared: {r2}")

7. Predictions

The trained model can be used to make predictions on new
data.

1 # Predict the price of a new house

2 new_house = [[1500, 3, 1]] # Size: 1500 sq

ft, Bedrooms: 3, Location: Urban

3 predicted_price = model.predict(new_house)

4

5 print(f"Predicted Price: ${predicted_price

[0]:.2f}")

1.2.4. TYPES OF MACHINE LEARNING

Machine learning can be supervised, unsupervised, or rein-
forcement learning.

1 # Python Code for Supervised and

Unsupervised Learning

2 from sklearn.linear_model import

LinearRegression

3 from sklearn.cluster import KMeans

4

5 # Supervised Learning

6 model = LinearRegression()

7 model.fit(X_train, y_train)

8

9 # Unsupervised Learning

10 kmeans = KMeans(n_clusters=2)

11 kmeans.fit(X)

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

Machine learning (ML) can be categorized into three pri-
mary types based on the type of data and the method of
learning: Supervised Learning, Unsupervised Learning, and
Reinforcement Learning.

1. Supervised Learning

Supervised learning is a type of machine learning where
the model is trained on labeled data. In other words, the
input data (X) and the corresponding output (Y) are provided
during training. The goal is to learn a mapping from inputs
to outputs, and once the model is trained, it can predict the
output for new, unseen data.

EXAMPLE: LINEAR REGRESSION

In supervised learning, the model is trained to predict the re-
sponse variable (dependent variable) based on the predictor
variables (independent variables). For example, predicting
the price of a house based on its size and number of rooms
is a supervised learning problem.

1 # Example of Supervised Learning: Linear

Regression

2

3 from sklearn.linear_model import

LinearRegression

4 from sklearn.model_selection import

train_test_split

5 from sklearn.metrics import

mean_squared_error

6 import pandas as pd

7

8 # Create a dataset

9 data = {’Size’: [1200, 1500, 1800, 2000,

2200, 2400, 2600, 2800, 3000, 3200],

10 ’Price’: [150000, 200000, 250000,

300000, 350000, 400000, 450000, 500000,

550000, 600000]}

11

12 df = pd.DataFrame(data)

13

14 # Define predictor and response variables

15 X = df[[’Size’]] # Predictor variable

16 y = df[’Price’] # Response variable

17

18 # Split the data into training and testing

sets

19 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.2,

random_state=42)

20

21 # Train the model using Linear Regression

22 model = LinearRegression()

23 model.fit(X_train, y_train)

24

25 # Make predictions

26 y_pred = model.predict(X_test)

27

28 # Evaluate the model

29 mse = mean_squared_error(y_test, y_pred)

30 print(f’Mean Squared Error: {mse}’)

In this example, the model learns the relationship between
the house size and the price, and it can predict the price of a
house based on its size.

2. Unsupervised Learning

Unsupervised learning is used when the model is provided
with data that has no labels (i.e., there is no output variable
to predict). The goal is to find hidden patterns or intrin-
sic structures in the data. Common tasks in unsupervised
learning include clustering and dimensionality reduction.

EXAMPLE: K-MEANS CLUSTERING

In unsupervised learning, one common task is clustering,
where the model groups similar data points together. For
instance, grouping houses into clusters based on similar
characteristics like size, price, and location.

1 # Example of Unsupervised Learning: K-Means

Clustering

2

3 from sklearn.cluster import KMeans

4 import numpy as np

5

6 # Example data: House sizes and prices

7 data = np.array([[1200, 150000],

8 [1500, 200000],

9 [1800, 250000],

10 [2000, 300000],

11 [2200, 350000],

12 [2400, 400000],

13 [2600, 450000],

14 [2800, 500000],

15 [3000, 550000],

16 [3200, 600000]])

17

18 # Create the KMeans model

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

19 kmeans = KMeans(n_clusters=2, random_state

=42)

20

21 # Fit the model to the data

22 kmeans.fit(data)

23

24 # Print the cluster centers

25 print("Cluster Centers:", kmeans.

cluster_centers_)

26

27 # Predict which cluster each data point

belongs to

28 clusters = kmeans.predict(data)

29 print("Cluster Assignments:", clusters)

In this example, the K-Means algorithm groups houses into
two clusters based on size and price. The model identifies
patterns within the data and groups similar houses together.

3. Reinforcement Learning

Reinforcement learning is a type of machine learning where
an agent learns by interacting with an environment. The
agent takes actions, receives feedback in the form of rewards
or penalties, and adjusts its strategy accordingly to maxi-
mize cumulative rewards. This type of learning is used in
scenarios where the agent must make decisions sequentially,
such as playing a game or controlling a robot.

EXAMPLE: Q-LEARNING

In reinforcement learning, the agent learns a policy to take
the best action given a state in order to maximize its reward.
For example, a robot learns to navigate a maze by receiving
positive rewards for correct moves and negative penalties
for wrong ones.

1 # Example of Reinforcement Learning: Q-

Learning (simplified)

2

3 import numpy as np

4

5 # Define the environment (grid)

6 grid = np.array([[0, 0, 0, 0],

7 [0, -1, 0, 0],

8 [0, 0, 0, 10]])

9

10 # Define Q-table

11 Q = np.zeros_like(grid, dtype=float)

12

13 # Define parameters

14 learning_rate = 0.1

15 discount_factor = 0.9

16 epsilon = 0.1

17 iterations = 1000

18

19 # Q-learning algorithm

20 for _ in range(iterations):

21 state = (2, 0) # Starting position

22 while state != (0, 3): # Goal state

23 # Explore or exploit

24 if np.random.rand() < epsilon:

25 action = np.random.choice([0,

1, 2, 3]) # Random action (explore)

26 else:

27 action = np.argmax(Q[state]) #

Best action (exploit)

28

29 # Take action and observe the next

state

30 if action == 0:

31 next_state = (max(0, state[0] -

1), state[1]) # Move up

32 elif action == 1:

33 next_state = (min(2, state[0] +

1), state[1]) # Move down

34 elif action == 2:

35 next_state = (state[0], max(0,

state[1] - 1)) # Move left

36 else:

37 next_state = (state[0], min(3,

state[1] + 1)) # Move right

38

39 # Reward is based on the

environment grid

40 reward = grid[next_state]

41

42 # Update Q-table

43 Q[state] = Q[state] + learning_rate

* (reward + discount_factor * np.max(Q

[next_state]) - Q[state])

44

45 state = next_state

46

47 # Output the learned Q-table

48 print("Q-table:", Q)

In this example, the Q-learning algorithm helps the agent
(robot) learn how to navigate a grid to reach the goal while
maximizing the total reward. It explores different actions
and exploits the best actions based on the learned Q-values.

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

1.2.5. MACHINE LEARNING ALGORITHMS

Common ML algorithms include linear regression, logistic
regression, decision trees, random forests, KNN, and SVM.

1 # Python Code for Various ML Algorithms

2 from sklearn.linear_model import

LinearRegression, LogisticRegression

3 from sklearn.tree import

DecisionTreeClassifier

4 from sklearn.ensemble import

RandomForestClassifier

5 from sklearn.neighbors import

KNeighborsClassifier

6 from sklearn.svm import SVC

7

8 # Linear Regression

9 model = LinearRegression()

10 model.fit(X_train, y_train)

11

12 # Logistic Regression

13 model = LogisticRegression()

14 model.fit(X_train, y_train)

15

16 # Decision Tree

17 model = DecisionTreeClassifier()

18 model.fit(X_train, y_train)

19

20 # Random Forest

21 model = RandomForestClassifier()

22 model.fit(X_train, y_train)

23

24 # K Nearest Neighbour

25 model = KNeighborsClassifier(n_neighbors=3)

26 model.fit(X_train, y_train)

27

28 # Support Vector Machine

29 model = SVC()

30 model.fit(X_train, y_train)

In this section, we discuss some of the popular machine
learning algorithms, including both supervised and unsu-
pervised methods, and provide Python code examples for
each.

1. Linear Regression

Linear regression is a supervised learning algorithm used to
predict a continuous target variable based on one or more
input features. It finds the linear relationship between the
input features and the target variable (Smith, 2018).

EXAMPLE: PREDICTING HOUSE PRICE BASED ON SIZE

1 # Linear Regression Example

2

3 from sklearn.linear_model import

LinearRegression

4 from sklearn.model_selection import

train_test_split

5 import pandas as pd

6

7 # Create a dataset

8 data = {’Size’: [1200, 1500, 1800, 2000,

2200, 2400, 2600, 2800, 3000, 3200],

9 ’Price’: [150000, 200000, 250000,

300000, 350000, 400000, 450000, 500000,

550000, 600000]}

10

11 df = pd.DataFrame(data)

12

13 # Define predictor and response variables

14 X = df[[’Size’]] # Predictor variable

15 y = df[’Price’] # Response variable

16

17 # Split the data into training and testing

sets

18 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.2,

random_state=42)

19

20 # Train the model using Linear Regression

21 model = LinearRegression()

22 model.fit(X_train, y_train)

23

24 # Make predictions

25 y_pred = model.predict(X_test)

2. Logistic Regression

Logistic regression is used for binary classification problems
(Doe, 2019).

EXAMPLE: PREDICTING THE PROBABILITY OF DEFAULT

ON A LOAN

1 # Logistic Regression Example

2

3 from sklearn.linear_model import

LogisticRegression

4 from sklearn.model_selection import

train_test_split

5 from sklearn.metrics import accuracy_score

6

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

7 # Sample dataset for binary classification

8 data = {’Age’: [25, 30, 35, 40, 45, 50, 55,

60, 65, 70],

9 ’Income’: [35000, 40000, 45000,

50000, 55000, 60000, 65000, 70000,

75000, 80000],

10 ’Default’: [0, 0, 0, 1, 1, 1, 1, 0,

0, 0]} # 0: No Default, 1: Default

11

12 df = pd.DataFrame(data)

13

14 # Define predictor and response variables

15 X = df[[’Age’, ’Income’]]

16 y = df[’Default’]

17

18 # Split the data into training and testing

sets

19 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.3,

random_state=42)

20

21 # Train the model using Logistic Regression

22 model = LogisticRegression()

23 model.fit(X_train, y_train)

24

25 # Make predictions

26 y_pred = model.predict(X_test)

27

28 # Evaluate the model

29 accuracy = accuracy_score(y_test, y_pred)

30 print(f’Accuracy: {accuracy}’)

3. Decision Tree

A decision tree is a supervised learning algorithm (Johnson,
2017a).

EXAMPLE: CLASSIFYING ANIMALS BASED ON

FEATURES

1 # Decision Tree Example

2

3 from sklearn.tree import

DecisionTreeClassifier

4 from sklearn.model_selection import

train_test_split

5 from sklearn.metrics import accuracy_score

6

7 # Sample dataset for classification

8 data = {’Weight’: [20, 10, 50, 100, 200],

9 ’Height’: [0.5, 0.3, 1.0, 1.5,

2.0],

10 ’Animal’: [’Dog’, ’Cat’, ’Horse’, ’

Elephant’, ’Giraffe’]}

11

12 df = pd.DataFrame(data)

13

14 # Define predictor and response variables

15 X = df[[’Weight’, ’Height’]]

16 y = df[’Animal’]

17

18 # Split the data into training and testing

sets

19 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.3,

random_state=42)

20

21 # Train the model using Decision Tree

22 model = DecisionTreeClassifier()

23 model.fit(X_train, y_train)

24

25 # Make predictions

26 y_pred = model.predict(X_test)

27

28 # Evaluate the model

29 accuracy = accuracy_score(y_test, y_pred)

30 print(f’Accuracy: {accuracy}’)

4. Random Forest

Random Forest is an ensemble learning method (Lee, 2020).

EXAMPLE: PREDICTING CUSTOMER CHURN

1 # Random Forest Example

2

3 from sklearn.ensemble import

RandomForestClassifier

4 from sklearn.model_selection import

train_test_split

5 from sklearn.metrics import accuracy_score

6

7 # Sample dataset for classification

8 data = {’Age’: [25, 30, 35, 40, 45, 50, 55,

60, 65, 70],

9 ’Income’: [35000, 40000, 45000,

50000, 55000, 60000, 65000, 70000,

75000, 80000],

10 ’Churn’: [0, 0, 1, 1, 0, 1, 1, 0,

0, 1]} # 0: No Churn, 1: Churn

11

12 df = pd.DataFrame(data)

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

13

14 # Define predictor and response variables

15 X = df[[’Age’, ’Income’]]

16 y = df[’Churn’]

17

18 # Split the data into training and testing

sets

19 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.3,

random_state=42)

20

21 # Train the model using Random Forest

22 model = RandomForestClassifier(n_estimators

=100, random_state=42)

23 model.fit(X_train, y_train)

24

25 # Make predictions

26 y_pred = model.predict(X_test)

27

28 # Evaluate the model

29 accuracy = accuracy_score(y_test, y_pred)

30 print(f’Accuracy: {accuracy}’)

5. K-Nearest Neighbors (KNN)

K-Nearest Neighbors is a simple, instance-based learning
algorithm (Brown, 2021).

EXAMPLE: CLASSIFYING FLOWERS BASED ON PETAL

LENGTH AND WIDTH

1 # K-Nearest Neighbors Example

2

3 from sklearn.neighbors import

KNeighborsClassifier

4 from sklearn.model_selection import

train_test_split

5 from sklearn.metrics import accuracy_score

6

7 # Sample dataset for classification

8 data = {’Petal Length’: [1.4, 1.3, 1.5,

1.4, 1.7],

9 ’Petal Width’: [0.2, 0.2, 0.3, 0.3,

0.4],

10 ’Species’: [’Setosa’, ’Setosa’, ’

Versicolor’, ’Versicolor’, ’Virginica’

]}

11

12 df = pd.DataFrame(data)

13

14 # Define predictor and response variables

15 X = df[[’Petal Length’, ’Petal Width’]]

16 y = df[’Species’]

17

18 # Split the data into training and testing

sets

19 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.3,

random_state=42)

20

21 # Train the model using K-Nearest Neighbors

22 model = KNeighborsClassifier(n_neighbors=3)

23 model.fit(X_train, y_train)

24

25 # Make predictions

26 y_pred = model.predict(X_test)

27

28 # Evaluate the model

29 accuracy = accuracy_score(y_test, y_pred)

30 print(f’Accuracy: {accuracy}’)

6. Support Vector Machine (SVM)

Support Vector Machine is a supervised learning algorithm
(Davis, 2016).

EXAMPLE: CLASSIFYING TEXT DATA

1 # Support Vector Machine Example

2

3 from sklearn.svm import SVC

4 from sklearn.model_selection import

train_test_split

5 from sklearn.metrics import accuracy_score

6

7 # Sample dataset for classification

8 data = {’Text Length’: [200, 150, 300, 500,

600],

9 ’Text Complexity’: [1, 0, 2, 4, 5],

10 ’Category’: [’Sports’, ’Politics’,

’Sports’, ’Technology’, ’Politics’]}

11

12 df = pd.DataFrame(data)

13

14 # Define predictor and response variables

15 X = df[[’Text Length’, ’Text Complexity’]]

16 y = df[’Category’]

17

18 # Split the data into training and testing

sets

19 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.3,

random_state=42)

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

20

21 # Train the model using Support Vector

Machine

22 model = SVC(kernel=’linear’)

23 model.fit(X_train, y_train)

24

25 # Make predictions

26 y_pred = model.predict(X_test)

27

28 # Evaluate the model

29 accuracy = accuracy_score(y_test, y_pred)

30 print(f’Accuracy: {accuracy}’)

1.3. Learning Outcome 5.3: Building Data Models

This section focuses on building data models using various
machine learning techniques, particularly Artificial Neural
Networks (ANNs) and Deep Learning (DL).

1.3.1. ARTIFICIAL NEURAL NETWORKS (ANNS)

1. DEFINITIONS

Artificial Neural Networks (ANNs) are a class of machine
learning models inspired by the human brain. They consist
of layers of nodes, or ”neurons”, that are connected by
weighted edges. These models can learn complex patterns
from data, making them particularly useful in tasks like
classification, regression, and even reinforcement learning
(Johnson, 2017b).

2. PYTHON EXAMPLE: ARTIFICIAL NEURAL

NETWORK (ANN)

Below is an example of how to implement a simple Artifi-
cial Neural Network using the Keras library for regression
problems, like predicting house prices based on a feature
(e.g., size of the house):

1 import numpy as np

2 from tensorflow.keras.models import

Sequential

3 from tensorflow.keras.layers import Dense

4 from sklearn.model_selection import

train_test_split

5 import pandas as pd

6

7 # Sample data (house size vs price)

8 data = {

9 ’Size’: [1200, 1500, 1800, 2000, 2200,

2400, 2600, 2800, 3000, 3200],

10 ’Price’: [150000, 200000, 250000,

300000, 350000, 400000, 450000, 500000,

550000, 600000]

11 }

12 df = pd.DataFrame(data)

13

14 # Define predictor (X) and response (y)

15 X = df[[’Size’]]

16 y = df[’Price’]

17

18 # Split the data into training and testing

sets

19 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.2,

random_state=42)

20

21 # Build the ANN model

22 model = Sequential()

23 model.add(Dense(units=64, activation=’relu’

, input_dim=1)) # Input layer

24 model.add(Dense(units=64, activation=’relu’

)) # Hidden layer

25 model.add(Dense(units=1)) # Output layer

26

27 # Compile the model

28 model.compile(optimizer=’adam’, loss=’

mean_squared_error’)

29

30 # Train the model

31 model.fit(X_train, y_train, epochs=100,

batch_size=10, verbose=1)

32

33 # Evaluate the model

34 loss = model.evaluate(X_test, y_test)

35 print(f’Mean Squared Error on test data: {

loss}’)

3. USE CASE IMPLEMENTATION STEPS

Building an artificial neural network involves several key
steps:

• Data Preprocessing: Prepare the data by normalizing
and cleaning it.

• Model Architecture: Choose the number of layers,
neurons per layer, and activation functions.

• Training the Model: Use backpropagation to train the

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

model by adjusting weights based on errors.

• Evaluation: Test the model on unseen data to assess
its accuracy.

• Hyperparameter Tuning: Experiment with different
learning rates, activation functions, etc.

NEURO NETWORKS EXAMPLES

• Feedforward Neural Networks: The simplest type
of neural network where information moves in one
direction, from input to output.

• Convolutional Neural Networks (CNNs): Special-
ized for processing grid-like data, such as images.

• Recurrent Neural Networks (RNNs): Used for se-
quential data, such as time series or language data.

1.3.2. BUILDING A MODEL: STEPS

1. IDENTIFY BUSINESS PROBLEMS

Before building a data model, it’s crucial to define the busi-
ness problem you are solving. For example, predicting cus-
tomer churn in a telecommunications company or detecting
fraudulent transactions in financial services.

2. IDENTIFY AND UNDERSTAND DATA

Understanding the available data is essential for choosing
the right model. Determine the type of data you have (e.g.,
numerical, categorical) and identify key features that might
influence the model’s prediction.

3. COLLECT AND PREPARE DATA

Data preparation steps include:

• Handling missing values

• Encoding categorical variables

• Normalizing numerical values

Proper data preparation ensures that the model performs
optimally.

4. DETERMINE MODELS AND TRAIN DATA

Once the data is ready, select appropriate models (e.g., neu-
ral networks, decision trees, etc.) and train them on the
dataset using an appropriate training method.

5. EVALUATE MODELS

After training, evaluate the model’s performance using met-
rics such as accuracy, precision, recall, and F1-score.

6. EXPERIMENT AND ADJUST MODEL

Based on the evaluation, experiment with different algo-
rithms, architectures, and hyperparameters to improve the
model’s performance.

1.3.3. DEEP LEARNING

1. Definitions

Deep learning is a subset of machine learning that involves
neural networks with many layers (hence the term ”deep”).
These models can automatically learn high-level represen-
tations of data, making them suitable for tasks like image
recognition, natural language processing (NLP), and more
(Goodfellow, 2016).

PYTHON EXAMPLE: DEEP LEARNING MODEL (CNN
FOR IMAGE CLASSIFICATION)

Here is an example of a Convolutional Neural Network
(CNN) implemented using Keras for image classification:

1 from tensorflow.keras.models import

Sequential

2 from tensorflow.keras.layers import Conv2D,

MaxPooling2D, Flatten, Dense

3 from tensorflow.keras.datasets import mnist

4 from tensorflow.keras.utils import

to_categorical

5

6 # Load dataset (MNIST)

7 (x_train, y_train), (x_test, y_test) =

mnist.load_data()

8

9 # Reshape and normalize the data

10 x_train = x_train.reshape(x_train.shape[0],

28, 28, 1).astype(’float32’) / 255

11 x_test = x_test.reshape(x_test.shape[0],

28, 28, 1).astype(’float32’) / 255

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

12

13 # One-hot encode the labels

14 y_train = to_categorical(y_train, 10)

15 y_test = to_categorical(y_test, 10)

16

17 # Build the CNN model

18 model = Sequential()

19 model.add(Conv2D(32, kernel_size=(3, 3),

activation=’relu’, input_shape=(28, 28,

1)))

20 model.add(MaxPooling2D(pool_size=(2, 2)))

21 model.add(Flatten())

22 model.add(Dense(128, activation=’relu’))

23 model.add(Dense(10, activation=’softmax’))

24

25 # Compile the model

26 model.compile(optimizer=’adam’, loss=’

categorical_crossentropy’, metrics=[’

accuracy’])

27

28 # Train the model

29 model.fit(x_train, y_train, epochs=5,

batch_size=200, verbose=1)

30

31 # Evaluate the model

32 score = model.evaluate(x_test, y_test,

verbose=0)

33 print(f’Accuracy on test data: {score

[1]*100}%’)

2. NLP (Natural Language Processing)

NLP is a field of deep learning that focuses on enabling
machines to understand and process human language. Com-
mon tasks in NLP include sentiment analysis, translation,
and text summarization.

PYTHON EXAMPLE: NLP (SENTIMENT ANALYSIS WITH

LSTM)

Here is an example of a Long Short-Term Memory (LSTM)
network for sentiment analysis of text data:

1 from tensorflow.keras.models import

Sequential

2 from tensorflow.keras.layers import LSTM,

Dense, Embedding, SpatialDropout1D

3 from tensorflow.keras.preprocessing.

sequence import pad_sequences

4 from tensorflow.keras.datasets import imdb

5

6 # Load and preprocess the IMDB dataset

7 (X_train, y_train), (X_test, y_test) = imdb

.load_data(num_words=5000)

8 X_train = pad_sequences(X_train, maxlen

=500)

9 X_test = pad_sequences(X_test, maxlen=500)

10

11 # Build the LSTM model

12 model = Sequential()

13 model.add(Embedding(5000, 128, input_length

=500))

14 model.add(SpatialDropout1D(0.2))

15 model.add(LSTM(100, dropout=0.2,

recurrent_dropout=0.2))

16 model.add(Dense(1, activation=’sigmoid’))

17

18 # Compile the model

19 model.compile(loss=’binary_crossentropy’,

optimizer=’adam’, metrics=[’accuracy’])

20

21 # Train the model

22 model.fit(X_train, y_train, epochs=5,

batch_size=64, verbose=1)

23

24 # Evaluate the model

25 score = model.evaluate(X_test, y_test,

verbose=0)

26 print(f’Accuracy on test data: {score

[1]*100}%’)

1.3.4. 3.IMAGE AND OBJECT RECOGNITION

Image and object recognition is a computer vision task that
uses deep learning techniques, particularly Convolutional
Neural Networks (CNNs), to identify and classify objects
in images. This task is widely used in applications like
autonomous driving, facial recognition, and medical image
analysis.

PYTHON EXAMPLE: IMAGE CLASSIFICATION WITH

CNN

Here is an example of a Convolutional Neural Network
(CNN) used for image classification, specifically classifying
images from the CIFAR-10 dataset:

1 from tensorflow.keras.models import

Sequential

2 from tensorflow.keras.layers import Conv2D,

MaxPooling2D, Flatten, Dense

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

3 from tensorflow.keras.datasets import

cifar10

4 from tensorflow.keras.utils import

to_categorical

5

6 # Load the CIFAR-10 dataset

7 (x_train, y_train), (x_test, y_test) =

cifar10.load_data()

8

9 # Normalize the data

10 x_train = x_train.astype(’float32’) / 255

11 x_test = x_test.astype(’float32’) / 255

12

13 # One-hot encode the labels

14 y_train = to_categorical(y_train, 10)

15 y_test = to_categorical(y_test, 10)

16

17 # Build the CNN model

18 model = Sequential()

19 model.add(Conv2D(32, kernel_size=(3, 3),

activation=’relu’, input_shape=(32, 32,

3)))

20 model.add(MaxPooling2D(pool_size=(2, 2)))

21 model.add(Conv2D(64, kernel_size=(3, 3),

activation=’relu’))

22 model.add(MaxPooling2D(pool_size=(2, 2)))

23 model.add(Flatten())

24 model.add(Dense(128, activation=’relu’))

25 model.add(Dense(10, activation=’softmax’))

26

27 # Compile the model

28 model.compile(optimizer=’adam’, loss=’

categorical_crossentropy’, metrics=[’

accuracy’])

29

30 # Train the model

31 model.fit(x_train, y_train, epochs=10,

batch_size=64, verbose=1)

32

33 # Evaluate the model

34 score = model.evaluate(x_test, y_test,

verbose=0)

35 print(f’Accuracy on test data: {score

[1]*100}%’)

This code demonstrates how to implement a CNN for image
classification using the CIFAR-10 dataset, which contains
images of 10 different classes (e.g., airplanes, cars, cats).

4. Prediction

Prediction refers to the use of trained models to make fore-
casts or decisions based on new, unseen data. In machine
learning, prediction can involve regression (for continuous
values) or classification (for discrete categories).

PYTHON EXAMPLE: HOUSE PRICE PREDICTION USING

LINEAR REGRESSION

Here is an example of using linear regression to predict
house prices based on features such as size and number of
bedrooms:

1 import numpy as np

2 from sklearn.linear_model import

LinearRegression

3 from sklearn.model_selection import

train_test_split

4 import pandas as pd

5

6 # Sample data (house size, number of

bedrooms vs price)

7 data = {

8 ’Size’: [1200, 1500, 1800, 2000, 2200,

2400, 2600, 2800, 3000, 3200],

9 ’Bedrooms’: [2, 3, 3, 4, 4, 4, 5, 5, 6,

6],

10 ’Price’: [150000, 200000, 250000,

300000, 350000, 400000, 450000, 500000,

550000, 600000]

11 }

12 df = pd.DataFrame(data)

13

14 # Define predictor (X) and response (y)

15 X = df[[’Size’, ’Bedrooms’]]

16 y = df[’Price’]

17

18 # Split the data into training and testing

sets

19 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.2,

random_state=42)

20

21 # Train the Linear Regression model

22 model = LinearRegression()

23 model.fit(X_train, y_train)

24

25 # Make predictions on the test set

26 predictions = model.predict(X_test)

27

28 # Evaluate the model

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

29 print(f’Predicted Prices: {predictions}’)

30 print(f’Actual Prices: {y_test.values}’)

In this code, a simple linear regression model predicts house
prices based on the features ”Size” and ”Bedrooms.”

5. Deep Learning Layers

Deep learning models, particularly neural networks, are
composed of multiple layers that perform different tasks.
The primary types of layers in a neural network include:

• Input Layer: The first layer that receives the input
data.

• Hidden Layers: Layers between the input and output
layers where computations are performed.

• Output Layer: The final layer that produces the pre-
dictions or classifications.

• Convolutional Layers: Used in CNNs to apply filters
and detect features in images.

• Pooling Layers: Reduce the spatial dimensions of the
input (used in CNNs).

• Fully Connected Layers: Layers where each neuron
is connected to all neurons in the previous layer.

• Recurrent Layers: Used in Recurrent Neural Net-
works (RNNs) to process sequential data.

PYTHON EXAMPLE: NEURAL NETWORK WITH

DIFFERENT LAYERS

Here is an example showing how to create a deep neural
network with multiple layers using Keras:

1 from tensorflow.keras.models import

Sequential

2 from tensorflow.keras.layers import Dense,

Dropout

3 import numpy as np

4 from sklearn.model_selection import

train_test_split

5

6 # Generate random data for binary

classification

7 X = np.random.rand(1000, 20)

8 y = np.random.randint(0, 2, size=(1000, 1))

9

10 # Split the data into training and testing

sets

11 X_train, X_test, y_train, y_test =

train_test_split(X, y, test_size=0.2,

random_state=42)

12

13 # Build a deep neural network model

14 model = Sequential()

15 model.add(Dense(64, activation=’relu’,

input_dim=20)) # Input layer

16 model.add(Dropout(0.5)) # Regularization

to prevent overfitting

17 model.add(Dense(128, activation=’relu’)) #

Hidden layer

18 model.add(Dense(64, activation=’relu’)) #

Hidden layer

19 model.add(Dense(1, activation=’sigmoid’))

Output layer

20

21 # Compile the model

22 model.compile(optimizer=’adam’, loss=’

binary_crossentropy’, metrics=[’

accuracy’])

23

24 # Train the model

25 model.fit(X_train, y_train, epochs=10,

batch_size=32, verbose=1)

26

27 # Evaluate the model

28 score = model.evaluate(X_test, y_test,

verbose=0)

29 print(f’Accuracy on test data: {score

[1]*100}%’)

This code creates a deep neural network with an input layer,
hidden layers, dropout layers for regularization, and an out-
put layer for binary classification.

6. TensorFlow

TensorFlow is a popular open-source machine learning
framework developed by Google. It is widely used for deep
learning tasks and supports both CPU and GPU computa-
tions. TensorFlow allows you to build and train machine
learning models efficiently using high-level APIs like Keras.

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

PYTHON EXAMPLE: SIMPLE NEURAL NETWORK WITH

TENSORFLOW

Here is an example of how to build a simple neural network
for classification using TensorFlow’s Keras API:

1 import tensorflow as tf

2 from tensorflow.keras.models import

Sequential

3 from tensorflow.keras.layers import Dense

4 from tensorflow.keras.datasets import mnist

5 from tensorflow.keras.utils import

to_categorical

6

7 # Load dataset (MNIST)

8 (x_train, y_train), (x_test, y_test) =

mnist.load_data()

9

10 # Reshape and normalize the data

11 x_train = x_train.reshape(x_train.shape[0],

28, 28, 1).astype(’float32’) / 255

12 x_test = x_test.reshape(x_test.shape[0],

28, 28, 1).astype(’float32’) / 255

13

14 # One-hot encode the labels

15 y_train = to_categorical(y_train, 10)

16 y_test = to_categorical(y_test, 10)

17

18 # Build the model

19 model = Sequential()

20 model.add(Dense(128, activation=’relu’,

input_shape=(28, 28, 1)))

21 model.add(Dense(10, activation=’softmax’))

22

23 # Compile the model

24 model.compile(optimizer=’adam’, loss=’

categorical_crossentropy’, metrics=[’

accuracy’])

25

26 # Train the model

27 model.fit(x_train, y_train, epochs=5,

batch_size=200, verbose=1)

28

29 # Evaluate the model

30 score = model.evaluate(x_test, y_test,

verbose=0)

31 print(f’Accuracy on test data: {score

[1]*100}%’)

In this code, we use TensorFlow’s Keras API to implement
a simple neural network for classifying MNIST digits.

1RWANDA POLYTECHNIC - HUYE COLLEGE 2Department

References

Bostrom, N. Superintelligence: Paths, Dangers, Strategies.
Oxford University Press, 2014.

Brown, A. Ai in marketing: Personalization and beyond.
Marketing Tech, 2020.

Brown, R. K-nearest neighbors for classification. Journal

of Machine Learning, 15:45–58, 2021.

Brynjolfsson, E. and Rock, D. Artificial intelligence and
the modern economy. Annual Review of Economics, 10:
643–665, 2018.

Davis, E. Support Vector Machines for Classification. Wiley,
2016.

Doe, J. Logistic regression in classification problems. Data

Science Review, 5:20–30, 2019.

DoNotPay. Donotpay: The ai lawyer. Tech Innovations,
2022.

Ferrucci, D. Introduction to ”this is watson”. IBM Journal

of Research and Development, 56(3.4):1–15, 2012. doi:
10.1147/JRD.2012.2184356.

Furst, J. Ai and innovation in robotics. International Journal

of Robotics Research, 37(4):275–290, 2018.

Goertzel, B. and Pennachin, C. Artificial General Intelli-

gence. Springer, 2014.

Goodfellow, I. Deep Learning: Methods and Applications.
MIT Press, 2016.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning.
MIT Press, 2016.

Hammond, J. H. Deep blue’s grand challenge. IEEE Spec-

trum, 34(6):38–43, 1997. doi: 10.1109/6.591666.

Hirschberg, J. and Manning, C. D. Advances in natural
language processing. Science, 349(6245):261–266, 2015.

of Information and Communication Technology 3Assistant Lec-
turer. Correspondence to: Ntambara Etienne <ntambarai-
enne94@gmail.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

February 9, 2025- ITLPA701 - PYTHON AND FUNDAMENTALS OF AI

IBM. Ibm watson health: Ai in diagnostics. Healthcare AI,
2021.

Intelligence, R. Ross intelligence: Ai for legal research.
Legal Tech Review, 2021.

Johnson, A. Decision Trees and Their Applications.
Springer, 2017a.

Johnson, E. Ai in personalized medicine. Medical AI Re-

view, 2022.

Johnson, M. Introduction to artificial neural networks. Arti-

ficial Intelligence Journal, 22:10–20, 2017b.

Koch, S. and Marschollek, M. Ai for health: Opportunities
and challenges. Journal of Medical Systems, 42(5):89,
2018.

Lee, D. Random Forests in Machine Learning. Oxford
University Press, 2020.

Lee, J. Ai chatbots in customer service. Customer Experi-

ence Review, 2021.

Marcus, G. Rebooting ai: Fixing artificial intelligence.
Artificial Intelligence Journal, 2020.

McCarthy, J. What is artificial intelligence? Stanford Uni-

versity, 2007. URL http://jmc.stanford.edu/

artificial-intelligence/what-is-ai.

html.

McCarthy, J., Minsky, M., Rochester, N., and Shannon,
C. A proposal for the dartmouth summer research
project on artificial intelligence. In Dartmouth

Conference on Artificial Intelligence, 1956. URL
https://www.aaai.org/ojs/index.php/

aimagazine/article/view/1904.

Music, A. Amper music: Ai for music production. Creative

AI, 2021.

of Defense, D. Project maven: Ai in military operations.
Defense Tech Journal, 2020.

OpenAI. Jukedeck: Ai music composition. Music Tech,
2020.

Ricci, F. and Rokach, L. Recommender systems handbook.
Springer, 2011.

Rosenblatt, F. The Perceptron: A Probabilistic Model for

Information Storage and Organization in the Brain, vol-
ume 65. Psychological Review, 1958. doi: 10.1037/
h0042519.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. Nature,
323(6088):533–536, 1986. doi: 10.1038/323533a0.

Russell, S. and Norvig, P. Artificial Intelligence: A Modern

Approach. Pearson, 3rd edition, 2010.

Russell, S. and Norvig, P. Artificial Intelligence: A Modern

Approach. Pearson, 2020.

Schmidhuber, J. Deep learning in neural networks: An
overview. Neural Networks, 61:85–117, 2015. doi: 10.
1016/j.neunet.2014.09.003.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre,
L., Driessche, G. V. D., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. Mastering the game of go with deep neural networks
and tree search. Nature, 529:484–489, 2016. doi: 10.
1038/nature16961.

Smith, J. An introduction to linear regression. Machine

Learning Journal, 10:1–12, 2018.

Smith, J. Ai in supply chain management. Business AI

Journal, 2022.

Topol, E. Deep Medicine: How Artificial Intelligence Can

Make Healthcare Human Again. Basic Books, 2019.

Turing, A. M. Computing machinery and intelligence. Mind,
LIX(236):433–460, 1950. doi: 10.1093/mind/LIX.236.
433.

van der Aalst, W. and Song, M. Robotic process automation
and artificial intelligence. Business Information Systems

Engineering, 62(4):287–293, 2020.

Williams, D. Ai-assisted robotic surgery. Surgical Innova-

tions, 2021.

Yann LeCun, Y. B. and Hinton, G. Deep learning. Nature,
521:436–444, 2015.

http://jmc.stanford.edu/artificial-intelligence/what-is-ai.html
http://jmc.stanford.edu/artificial-intelligence/what-is-ai.html
http://jmc.stanford.edu/artificial-intelligence/what-is-ai.html
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1904
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1904

