
MODULE NAME AND CODE: ITLPA701 PYTHON AND
FUNDAMENTALS OF AI

RTQF Level: 7

Credits: 10

Sector: ICT

Sub-sector: IT

Module Leader: NTAMBARA Etienne

E-mail: entambara@rp.ac.rw

Academic Year: 2024-2025

Rwanda Polytechnic - Huye college
Academic year: 2024-2025



Abstract

This module aims to introduce learners to the funda-
mental of applying Python programming language in
various projects development, what makes it so mas-
sively popular, and its benefits and limitations. After
completion of this module, learner will be able to ap-
ply python concept, developing AI based programs,
web development (Server-side), software development,
Data analysis as well as system scripting.

Contents

1 Introduction 4
1.1 What is python . . . . . . . . . . . . . . 4
1.2 What can python Do . . . . . . . . . . . 4
1.3 Prerequisite . . . . . . . . . . . . . . . . 4

2 Prepare Python environment 4
2.1 Identify Python version . . . . . . . . . 4

2.1.1 Definition of terms . . . . . . . 4
2.1.2 Characteristic of python . . . . . 4
2.1.3 Application of python . . . . . 5

2.2 Add python Directory . . . . . . . . . . 6
2.2.1 Local Environment set up . . . . 6
2.2.2 Running Python . . . . . . . . . 7

2.3 Identify library . . . . . . . . . . . . . . 7
2.3.1 Definition of key terms . . . . . . 7
2.3.2 Identification of problem . . . . 7
2.3.3 Getting library . . . . . . . . . . 8

3 Develop Python concept 8
3.1 Writing Python syntax . . . . . . . . . 8

3.1.1 Execute syntax . . . . . . . . . 8
3.1.2 Use Command line . . . . . . . 9
3.1.3 Apply comments . . . . . . . . . 10

3.2 Perform declaration . . . . . . . . . . . 10
3.2.1 Definition of Key terms . . . . . 10
3.2.2 Assigning values . . . . . . . . . 10
3.2.3 Types of variables . . . . . . . . 11

3.3 Defferentiate data type . . . . . . . . . 11
3.3.1 Define build-in data type . . . . 12
3.3.2 Numbers . . . . . . . . . . . . . 12

4 Develop Python application 12
4.1 Use of operators . . . . . . . . . . . . . 12

4.1.1 Arthimetic operators . . . . . . . 12
4.1.2 Comparison operators . . . . . . 12
4.1.3 Logical Operator . . . . . . . . . 12
4.1.4 Other operators . . . . . . . . . . 12

4.2 Determine collection of data . . . . . . 13
4.2.1 Definition of list . . . . . . . . . 13

4.2.2 Definition of Tuple . . . . . . . 14
4.2.3 Definition of Set . . . . . . . . . 15
4.2.4 Definition of Dictionary . . . . . 15

4.3 Understand condition statement . . . . 16
4.3.1 Explaination of Logical condition 16
4.3.2 Eplaination of IF statemnt . . . 17

4.4 Identify other functions and classes . . 17
4.4.1 Use of Looping . . . . . . . . . . 17
4.4.2 Definition of Functions . . . . . 18
4.4.3 Definition of Classes/Objects . . 18
4.4.4 Definition of other tools . . . . . 20

5 Develop python scripting 20
5.1 Perform file handling . . . . . . . . . . 20

5.1.1 Practice to read file . . . . . . . 20
5.1.2 Practice to read file . . . . . . . 21
5.1.3 Pactice to delete file . . . . . . . 22

5.2 Determine Python Libraries . . . . . . 22
5.3 Interact with database . . . . . . . . . 23

5.3.1 Python Mysql commands . . . . 23
5.3.2 MongoDB . . . . . . . . . . . . . 25

6 Develop AI based applications 27
6.1 Introduce AI . . . . . . . . . . . . . . . 27

6.1.1 Definitiona of Key terms: . . . . 27
6.1.2 Types of AI . . . . . . . . . . . . 27
6.1.3 Real life example of AI . . . . . 28
6.1.4 Future of AI . . . . . . . . . . . 29

6.2 Implement Machine Learning . . . . . . 30
6.2.1 Definition of Key Terms: . . . . . 30
6.2.2 Define Variables and data . . . . 30
6.2.3 Machine Learning processes . . 31
6.2.4 Types of Machine Learning . . . 31
6.2.5 Machine Learning Algorithm . . 31

6.3 Building data model . . . . . . . . . . . 39
6.3.1 Artificial Neural networks . . . . 39
6.3.2 Building model steps . . . . . . 45
6.3.3 Deep learning . . . . . . . . . . 46

List of Figures

1 AI in every sector of life . . . . . . . . . 27
2 AI atmosphere . . . . . . . . . . . . . . 27
3 Selving Driving Car . . . . . . . . . . . 28
4 Navigation Systems . . . . . . . . . . . . 28
5 Chatbot . . . . . . . . . . . . . . . . . . 28
6 facial and Key points detection . . . . . 29
7 Face detection . . . . . . . . . . . . . . . 29
8 Keypoints detection . . . . . . . . . . . 29
9 Changi Airport Singapore facial recog-

nition system . . . . . . . . . . . . . . . 29

1



10 AI in Health care . . . . . . . . . . . . . 30
11 Essential Python Libraries for Data An-

alytics . . . . . . . . . . . . . . . . . . . 30
12 Data Preprocessing Workflow . . . . . . 32
13 Machine learning types and its algorithms 32
14 Machine learning types and its target

nature . . . . . . . . . . . . . . . . . . . 32
15 Machine learning types with Learning

Tasks and examples . . . . . . . . . . . 33
16 Decision Tree . . . . . . . . . . . . . . . 35
17 K-Nearest Neighbor . . . . . . . . . . . 37
18 Support Vector Machine . . . . . . . . . 38
19 Support Vector Machine with Kernels . 39
20 Most of Artificial Neural Network flow . 41
21 Summarized ANN workflow . . . . . . . 41
22 Neural Network Architecture . . . . . . 41
23 Convolution Neural Network Illustra-

tion (CNN) . . . . . . . . . . . . . . . . 42
24 Convolution with Pooling . . . . . . . . 47
25 Convolve with Kernel Size . . . . . . . . 47
26 Breast Cancer Prognosis steps Illustra-

tion . . . . . . . . . . . . . . . . . . . . 49
27 A Generic LSTM-Based Neural Net-

work Architecture to infer Heteroge-
neous Model Transformations . . . . . . 50

28 The proposed 1D CNN-LSTM architec-
ture . . . . . . . . . . . . . . . . . . . . 50

Source Code

1 Checking python version . . . . . . . . . 4
2 Installing Python . . . . . . . . . . . . . 6
3 Verify installation . . . . . . . . . . . . . 6
4 Add path . . . . . . . . . . . . . . . . . 6
5 Install python . . . . . . . . . . . . . . . 6
6 Verify installation . . . . . . . . . . . . . 6
7 Add path . . . . . . . . . . . . . . . . . 6
8 Verify if python installed . . . . . . . . . 6
9 Installing python . . . . . . . . . . . . . 6
10 Add path . . . . . . . . . . . . . . . . . 6
11 Install virtual environment . . . . . . . 6
12 Activating environment . . . . . . . . . 6
13 Verify installation . . . . . . . . . . . . . 6
14 Run python Script . . . . . . . . . . . . 7
15 Importing module . . . . . . . . . . . . 7
16 Install Numpy . . . . . . . . . . . . . . . 7
17 Install PIP . . . . . . . . . . . . . . . . 7
18 Check if PIP installed . . . . . . . . . . 8
19 Install PIP . . . . . . . . . . . . . . . . 8
20 Download and Install . . . . . . . . . . . 8
21 Importing library . . . . . . . . . . . . . 8
22 Using library . . . . . . . . . . . . . . . 8
23 python mode . . . . . . . . . . . . . . . 9
24 example of python script . . . . . . . . . 9
25 simple program . . . . . . . . . . . . . . 9
26 Compiling file . . . . . . . . . . . . . . . 9
27 example of compiling . . . . . . . . . . . 9

28 Example of idented code . . . . . . . . . 10
29 Example of incorect idented code . . . . 10
30 single line comment . . . . . . . . . . . 10
31 Multi line comment . . . . . . . . . . . . 10
32 Multi line example 2 . . . . . . . . . . . 10
33 example of declaration . . . . . . . . . . 10
34 Variable . . . . . . . . . . . . . . . . . . 10
35 Single value assignment . . . . . . . . . 10
36 Multi value assignment . . . . . . . . . . 10
37 Local variable . . . . . . . . . . . . . . . 11
38 Global variable . . . . . . . . . . . . . . 11
39 Global keyword . . . . . . . . . . . . . . 11
40 Example of Text . . . . . . . . . . . . . 11
41 Example of list . . . . . . . . . . . . . . 11
42 Example of turple . . . . . . . . . . . . 11
43 Example of Mapping . . . . . . . . . . . 11
44 Example of String . . . . . . . . . . . . 11
45 Example of Boolean . . . . . . . . . . . 11
46 Example of integer number . . . . . . . 12
47 Example of float number . . . . . . . . . 12
48 Example of complex number . . . . . . . 12
49 Arthimetic operation . . . . . . . . . . . 12
50 Comparison operations . . . . . . . . . . 12
51 And operation . . . . . . . . . . . . . . 12
52 OR operation . . . . . . . . . . . . . . . 12
53 not operation . . . . . . . . . . . . . . . 12
54 Example of list . . . . . . . . . . . . . . 13
55 Accessing item . . . . . . . . . . . . . . 13
56 Negative indexing . . . . . . . . . . . . . 13
57 Range of Index . . . . . . . . . . . . . . 13
58 Changing item value . . . . . . . . . . . 13
59 Example of loop . . . . . . . . . . . . . 13
60 Checking if item exist . . . . . . . . . . 13
61 Length of list . . . . . . . . . . . . . . . 13
62 Adding item . . . . . . . . . . . . . . . . 13
63 Removing Item . . . . . . . . . . . . . . 13
64 Copy a list . . . . . . . . . . . . . . . . 13
65 Creating list . . . . . . . . . . . . . . . . 13
66 Example of list method . . . . . . . . . 14
67 Example of tuple . . . . . . . . . . . . . 14
68 Accessing Item . . . . . . . . . . . . . . 14
69 Negative indexing . . . . . . . . . . . . . 14
70 Range of Index . . . . . . . . . . . . . . 14
71 Change item value . . . . . . . . . . . . 14
72 Example of loop . . . . . . . . . . . . . 14
73 Check if Item exist . . . . . . . . . . . . 14
74 Length of list . . . . . . . . . . . . . . . 14
75 Adding item . . . . . . . . . . . . . . . . 14
76 Removing item . . . . . . . . . . . . . . 14
77 Copy a list . . . . . . . . . . . . . . . . 14
78 creating list . . . . . . . . . . . . . . . . 15
79 list method . . . . . . . . . . . . . . . . 15
80 Example of a set . . . . . . . . . . . . . 15
81 Access Item . . . . . . . . . . . . . . . . 15
82 Add Item . . . . . . . . . . . . . . . . . 15
83 checking length . . . . . . . . . . . . . . 15
84 Removing item . . . . . . . . . . . . . . 15

2



SOURCE CODE SOURCE CODE

85 Joining two sets . . . . . . . . . . . . . . 15
86 Seting constructor . . . . . . . . . . . . 15
87 Setting method . . . . . . . . . . . . . . 15
88 Example of Dictionary . . . . . . . . . . 15
89 Accessing Item . . . . . . . . . . . . . . 15
90 Changes value . . . . . . . . . . . . . . . 16
91 Looping through dictionary . . . . . . . 16
92 Checking if key exist . . . . . . . . . . . 16
93 Checking length . . . . . . . . . . . . . . 16
94 Adding item . . . . . . . . . . . . . . . . 16
95 Removing Item . . . . . . . . . . . . . . 16
96 Copying dictionary . . . . . . . . . . . . 16
97 Nested dictionary . . . . . . . . . . . . . 16
98 Using dict() constructor . . . . . . . . . 16
99 Example of dictionary method . . . . . 16
100 Equal condition . . . . . . . . . . . . . . 16
101 Not equal condition . . . . . . . . . . . 16
102 Less than condition . . . . . . . . . . . . 17
103 greater than condition . . . . . . . . . . 17
104 Using Identation . . . . . . . . . . . . . 17
105 example of If statement . . . . . . . . . 17
106 Example of ELIF statement . . . . . . . 17
107 Example of ELSE statement . . . . . . . 17
108 Shorthand IF condition . . . . . . . . . 17
109 Shorthand IF..ELSE . . . . . . . . . . . 17
110 example of for looop . . . . . . . . . . . 17
111 example of while loop . . . . . . . . . . 18
112 continue statement . . . . . . . . . . . . 18
113 Break statement . . . . . . . . . . . . . 18
114 Defining a function . . . . . . . . . . . . 18
115 calling a function . . . . . . . . . . . . . 18
116 Arguments of function . . . . . . . . . . 18
117 Default paramater value . . . . . . . . . 18
118 Passing a list argument . . . . . . . . . 18
119 Using Lambda . . . . . . . . . . . . . . 18
120 Example of Arrays . . . . . . . . . . . . 18
121 Defining a class . . . . . . . . . . . . . . 19
122 Creating Object . . . . . . . . . . . . . . 19
123 Object method . . . . . . . . . . . . . . 19
124 Using self parameter . . . . . . . . . . . 19
125 Modifying object property . . . . . . . . 19
126 Deleting object property . . . . . . . . . 19
127 Deleting object . . . . . . . . . . . . . . 19
128 example of Pass statement . . . . . . . . 19
129 example of inheritance . . . . . . . . . . 19
130 Example of iterator . . . . . . . . . . . . 19
131 global scope . . . . . . . . . . . . . . . . 20
132 Example of a Module . . . . . . . . . . . 20
133 example of date module . . . . . . . . . 20
134 json module . . . . . . . . . . . . . . . . 20
135 Installing PIP . . . . . . . . . . . . . . . 20
136 example of Try .. Except . . . . . . . . 20
137 Allowing User input . . . . . . . . . . . 20
138 Opening file . . . . . . . . . . . . . . . . 20
139 Reading file . . . . . . . . . . . . . . . . 20
140 File permission . . . . . . . . . . . . . . 21
141 closing file . . . . . . . . . . . . . . . . . 21

142 Using file . . . . . . . . . . . . . . . . . 21
143 Reading file . . . . . . . . . . . . . . . . 21
144 Creating new file . . . . . . . . . . . . . 21
145 Writing to an existing file . . . . . . . . 21
146 Creating and write file . . . . . . . . . . 21
147 Removing file . . . . . . . . . . . . . . . 22
148 Checking if file exist before . . . . . . . 22
149 Deleting file . . . . . . . . . . . . . . . . 22
150 full example . . . . . . . . . . . . . . . . 22
151 Using Numerical . . . . . . . . . . . . . 23
152 Example of using pandas . . . . . . . . . 23
153 example of matplotlib . . . . . . . . . . 23
154 EXample of scipy . . . . . . . . . . . . . 23
155 example of scikit-learn . . . . . . . . . . 23
156 Installing mysql connector . . . . . . . . 23
157 testing connector . . . . . . . . . . . . . 23
158 Creating connection . . . . . . . . . . . 24
159 Creating database . . . . . . . . . . . . 24
160 Creating a table . . . . . . . . . . . . . 24
161 Inserting data . . . . . . . . . . . . . . . 24
162 Selecting data . . . . . . . . . . . . . . . 24
163 Deleting data . . . . . . . . . . . . . . . 24
164 WHERE condition . . . . . . . . . . . . 24
165 Order by condition . . . . . . . . . . . . 24
166 Droping table . . . . . . . . . . . . . . . 24
167 Updating table . . . . . . . . . . . . . . 25
168 LIMIT condition . . . . . . . . . . . . . 25
169 Join operation . . . . . . . . . . . . . . 25
170 closing connection . . . . . . . . . . . . 25
171 Installing pymango . . . . . . . . . . . . 25
172 creating connection . . . . . . . . . . . . 25
173 connecting to remote mongodb . . . . . 25
174 creating collection . . . . . . . . . . . . 25
175 single document . . . . . . . . . . . . . . 25
176 multiple document . . . . . . . . . . . . 26
177 Retrieving document . . . . . . . . . . . 26
178 finding specific field . . . . . . . . . . . 26
179 Deleting one document . . . . . . . . . . 26
180 Delete multiple documents . . . . . . . . 26
181 Using WHERE condition . . . . . . . . 26
182 using ORDER BY condition . . . . . . . 26
183 Droping collection . . . . . . . . . . . . 26
184 updating single document . . . . . . . . 26
185 Updating multiple document . . . . . . 26
186 Using LIMIT condition . . . . . . . . . . 26
187 Using join operation . . . . . . . . . . . 26
188 With one features . . . . . . . . . . . . . 32
189 With Multiple features . . . . . . . . . . 33
190 With Real dataset . . . . . . . . . . . . 33
191 Binary Classification . . . . . . . . . . . 34
192 Using Iris dataset . . . . . . . . . . . . . 34
193 Using Breast Cancer Detection . . . . . 35
194 Binary classification . . . . . . . . . . . 36
195 Multiclass classification using Iris dataset 36
196 Decision tree for Regression . . . . . . . 36
197 KNN for Binary Classification . . . . . . 37
198 KNN for Multiclass classification . . . . 38

3 Python & Fundamental of AI page:3



2 PREPARE PYTHON ENVIRONMENT

199 KNN for regression . . . . . . . . . . . . 38
200 SVM for Binary Classification . . . . . . 39
201 SVM for Multiclass Classification (Iris

Dataset) . . . . . . . . . . . . . . . . . . 39
202 SVM for Regression . . . . . . . . . . . 39
203 MNIST Classification . . . . . . . . . . 40
204 Sentiment Analysis on IMDB Dataset . 43
205 Sentiment Analysis . . . . . . . . . . . . 43
206 Using Shakespeare-style Text . . . . . . 44
207 Speech Recognition . . . . . . . . . . . . 46

1 Introduction

1.1 What is python

Python is a high-level, interpreted programming lan-
guage known for its simplicity, readability, and versa-
tility. It supports multiple programming paradigms,
including procedural, object-oriented, and functional
programming. Python’s extensive standard library
and large community make it suitable for various ap-
plications such as web development, data analysis, ma-
chine learning, artificial intelligence, scientific comput-
ing, and automation. Its clean syntax and ease of use
make it an excellent choice for both beginners and ex-
perienced developers, enabling rapid development and
efficient problem-solving.

1.2 What can python Do

Python is a versatile programming language capable
of performing a wide range of tasks across different
fields. It can be used for web development (using
frameworks like Django and Flask), data analysis and
visualization (with libraries such as Pandas and Mat-
plotlib), machine learning and artificial intelligence
(using TensorFlow, PyTorch, and scikit-learn), au-
tomation and scripting, scientific computing, game de-
velopment, and cybersecurity. Additionally, Python is
widely used for software development, database man-
agement, and building APIs. Its simplicity and exten-
sive library ecosystem make it suitable for both small-
scale projects and large, complex systems.

1.3 Prerequisite

While Python is known for its ease of use and beginner-
friendly syntax, having a basic understanding of com-
puter concepts can be helpful when getting started.
Familiarity with ideas like variables, data types, loops,
and conditional statements can ease the learning pro-
cess, although no extensive programming background
is required. Basic math and logic skills also enhance
problem-solving abilities, making it easier to grasp how
Python programs function.

2 Prepare Python environment

2.1 Identify Python version

2.1.1 Definition of terms

Python: is a high-level, interpreted programming
language known for its simplicity, readability, and
versatility. It is widely used in various fields, including
web development, data science, artificial intelligence,
and automation[1].

Programming Language: is a set of instruc-
tions and rules used to communicate with a computer
and develop software applications. It allows program-
mers to write code that a machine can execute to
perform specific tasks.

Use of Python: Python is used in various do-
mains, including:

1. Server-side Development: Python is com-
monly used for backend development in web appli-
cations. Frameworks like Django and Flask help
in handling database interactions, user authenti-
cation, and web page rendering.

2. Software Development: Python is used to
build desktop applications, mobile apps, and en-
terprise solutions. It provides tools for GUI devel-
opment, automation, and integration with other
programming languages.

3. Mathematics: Python supports mathematical
computations through libraries such as NumPy,
SciPy, and SymPy. It is widely used in data anal-
ysis, machine learning, and scientific research.

4. System Scripting: Python can be used for au-
tomating system administration tasks, such as
file handling, process management, and network
scripting. It is commonly employed in DevOps
and cybersecurity.

To identify the version of Python installed on your
system, you can use the following command:

1 python --version //cmd

2

3 python3 --version //cmd

4

5

6 // python script

7 import sys

8 print(sys.version)

Listing 1: Checking python version

2.1.2 Characteristic of python

1. Structure: Python has a well-organized struc-
ture that emphasizes readability and simplicity:

4 Python & Fundamental of AI page:4



2.1 Identify Python version 2 PREPARE PYTHON ENVIRONMENT

(a) Indentation-based syntax: Python uses
indentation instead of brackets () to define
code blocks, making it clean and readable.

(b) Object-oriented: Supports object-oriented
programming (OOP) principles such as
classes and inheritance.

(c) Dynamic typing: Variables do not require
explicit declaration, making coding flexible
and reducing complexity.

(d) Interpreted language: Python code is ex-
ecuted line by line, which simplifies debug-
ging.

2. Application: Python is used in various domains
due to its flexibility and extensive libraries:

(a) Web development: Frameworks like
Django and Flask help build powerful web
applications.

(b) Data science and AI: Libraries like Ten-
sorFlow, NumPy, and Pandas make Python
ideal for machine learning and data analysis.

(c) Cybersecurity: Used for penetration test-
ing and security automation with tools like
Scapy and PyCryptodome.

(d) Embedded systems: Python is used in IoT
and robotics through platforms like Rasp-
berry Pi.

(e) Game development: Libraries like
Pygame allow developers to create 2D
games.

3. Checking: Python provides various mechanisms
for error handling and code validation

(a) Type checking: Python is dynamically
typed, but tools likemypy can enforce static
type checking.

(b) Error handling: try-except blocks handle
runtime errors gracefully

(c) Linting tools: Tools like pylint and flake8
analyze Python code for syntax errors and
best practices.

(d) Unit testing: The unittest module helps
in automated testing of code

4. Integration: Python integrates seamlessly with
various technologies and languages

(a) Database integration: Supports
databases like MySQL, PostgreSQL, and
MongoDB using libraries like SQLAlchemy
and PyMongo.

(b) Language interoperability: Works with
C, C++, and Java through tools like
Cython, JPype, and SWIG.

(c) Cloud computing: Supports AWS, Google
Cloud, and Azure for cloud-based applica-
tions.

(d) API development: Python can be used to
build and consume APIs using FastAPI and
Flask-RESTful.

2.1.3 Application of python

1. Flexibility: Python is highly flexible and can be
used across various fields due to its adaptability

(a) Cross-platform compatibility: Runs on
Windows, macOS, Linux, and even mobile
operating systems.

(b) Multi-paradigm support: Supports pro-
cedural, object-oriented, and functional pro-
gramming.

(c) Extensive libraries: Has a vast collection
of libraries and frameworks for web devel-
opment, data science, AI, automation, and
more.

(d) Scripting and automation: Used for au-
tomating repetitive tasks, such as data pro-
cessing and system administration.

2. Audience: Python is designed for a broad range
of users, including:

(a) Beginners: Its simple syntax makes it an
ideal first programming language.

(b) Software developers: Used for building
web applications, desktop applications, and
system scripts.

(c) Data scientists and AI researchers: Pre-
ferred for machine learning, data analysis,
and artificial intelligence.

(d) Cybersecurity experts: Used in ethical
hacking, penetration testing, and security
automation.

(e) Engineers and scientists: Supports
numerical computing and simulations in
physics, engineering, and bioinformatics.

3. Prerequisite: To start using Python effectively,
some basic knowledge and skills are helpful

(a) Basic programming concepts: Under-
standing variables, loops, and functions is
beneficial but not mandatory.

(b) Mathematical skills: Helpful for data sci-
ence, AI, and scientific computing applica-
tions.

(c) Logical thinking: Problem-solving and al-
gorithmic thinking are essential for writing
efficient Python programs.

5 Python & Fundamental of AI page:5



2.2 Add python Directory 2 PREPARE PYTHON ENVIRONMENT

(d) Familiarity with English: Since Python
syntax is mostly based on English words,
reading and writing English can help in un-
derstanding code more easily.

2.2 Add python Directory

2.2.1 Local Environment set up

When Python is installed, its executable file needs
to be included in the system’s environment variables
(PATH) to be accessible from any command line or
terminal.

1. Windows

(a) Install Python from the official website:
Python Downloads

(b) During installation, check the box: Add
Python to PATH

(c) If Python is already installed, manually add
it to PATH: Open Control Panel → Sys-
tem → Advanced system settings. Click
Environment Variables. Under System
Variables, find and edit Path Add the
Python installation directory. Click OK and
restart the terminal

2. Linux / Unix

(a) Install Python using package managers:

1 sudo apt update && sudo apt

install python3

2

3 //or

4 sudo yum install python3

5

6

Listing 2: Installing Python

(b) Verify installation:

1 python3 --version

2

3

Listing 3: Verify installation

(c) Add Python to PATH (if needed):

1 echo "export PATH=$PATH:/
usr/local/bin/python3" >> ~/.

bashrc

2 source ~/. bashrc

Listing 4: Add path

3. Mac (Macintosh)

(a) Install Python using Homebrew:

1 brew install python3

2

3

Listing 5: Install python

(b) Verify installation:

1 python3 --version

2

3

Listing 6: Verify installation

(c) If needed, add Python to PATH:

1 echo "export PATH=$PATH:/
usr/local/bin/python3" >> ~/.

zshrc

2 source ~/. zshrc

3

4

5

Listing 7: Add path

4. Raspberry Pi

(a) Python is pre-installed in Raspberry
Pi OS. To verify:

1 python3 --version

Listing 8: Verify if python installed

(b) If not installed, use:

1 sudo apt update && sudo apt

install python3

Listing 9: Installing python

(c) Add Python to PATH if required:

1 echo "export PATH=$PATH:/usr/
bin/python3" >> ~/. bashrc

2 source ~/. bashrc

Listing 10: Add path

Local Environment Setup: After installing Python,
set up the environment for efficient development:

1. Install Virtual Environment (Optional but Rec-
ommended)

1 python3 -m venv myenv

2

3

Listing 11: Install virtual environment

Activate it: Windows: myenv
Scripts
activate Linux/Mac: source myenv/bin/activate

2. Install Essential Packages

1 pip install --upgrade pip setuptools

wheel

2

3

Listing 12: Activating environment

3. Verify Installation

1 python --version

2 pip --version

3

4

Listing 13: Verify installation

6 Python & Fundamental of AI page:6

https://www.python.org/downloads/


2.3 Identify library 2 PREPARE PYTHON ENVIRONMENT

2.2.2 Running Python

Python can be executed in two main ways: via the
command line or using an Integrated Develop-
ment Environment (IDE).

1. Running Python from the Command Line

(a) Open the command prompt (Windows) or
terminal (Mac/Linux)

(b) Type python (or python3 on some systems)
and press Enter to start the interactive
Python shell.

(c) To run a Python script, navigate to its di-
rectory and execute:

1 python script.py

2 //or

3 python3 script.py

4

5

Listing 14: Run python Script

(d) To exit the interactive shell, type exit() or
press Ctrl + Z (Windows) / Ctrl + D
(Mac/Linux).

2. Running Python in an Integrated Develop-
ment Environment (IDE)

(a) Built-in options: Python comes with
IDLE, a simple IDE that allows writing, edit-
ing, and running Python code.

(b) Popular IDEs for Python: PyCharm:
Feature-rich, great for large projects.
Visual Studio Code (VS Code):
Lightweight, highly customizable. Jupyter
Notebook: Best for data science and AI.
Spyder: Common for scientific computing.
Thonny: Beginner-friendly.

(c) Open the IDE, create a new Python script
(.py file), write your code, and run it using
the built-in execution feature.

2.3 Identify library

2.3.1 Definition of key terms

1. Library: A library in Python is a collection of
pre-written modules and functions that provide
specific functionalities, such as data manipula-
tion, machine learning, or web development. Ex-
amples includeNumPy for numerical computing,
Pandas for data analysis, and TensorFlow for
AI.

2. Package: is a structured collection of Python
modules that are grouped together in a direc-
tory containing a special file called init .py. It
helps organize code into reusable components. For
example, scipy is a package that contains multi-
ple scientific computing modules.

3. Import: The import statement in Python is
used to load and use modules or packages
in a program. For example:

1

2 import math # Imports the math

module

3 print(math.sqrt (16)) # Uses the

sqrt function from the math module

4

5

6

Listing 15: Importing module

4. Install: Installing in Python refers to download-
ing and adding external libraries or packages to
your Python environment. This is done using
package managers like PIP. For example, to in-
stall NumPy:

1

2 pip install numpy

3

Listing 16: Install Numpy

5. PIP (Python Package Installer): PIP is the
default package manager for Python, used to in-
stall, upgrade, and manage libraries and de-
pendencies. It allows users to download pack-
ages from the Python Package Index (PyPI).
To check if PIP is installed:

1 //check if pip is installed

2 pip --version

3

4 // install package

5 pip install package_name

6

7

8 // installing flask

9 pip install flask

Listing 17: Install PIP

2.3.2 Identification of problem

1. Problem: A problem in Python development
refers to an issue or challenge that arises when
writing, running, or deploying Python programs.
This could include syntax errors, runtime er-
rors, logic errors, missing dependencies, or
performance inefficiencies. For example, a
common problem is a ModuleNotFoundError,
which occurs when trying to import a package
that is not installed.

2. Solution: Solutions vary depending on the prob-
lem. For example:

(a) Syntax errors: Check and correct the code
syntax based on Python rules.

(b) Runtime errors: Debug using try-except
blocks to handle exceptions.

7 Python & Fundamental of AI page:7



3 DEVELOP PYTHON CONCEPT

(c) Missing dependencies: Install required
packages using PIP (pip install pack-
age name).

(d) Performance inefficiencies: Optimize
code using efficient algorithms and built-in
functions.

2.3.3 Getting library

To use external libraries in Python, follow these steps:

1. PIP (Python Package Installer): PIP is the
default package manager for Python, used to in-
stall and manage libraries from the Python Pack-
age Index (PyPI).

Check if PIP is installed:

1 pip --version

2

3

Listing 18: Check if PIP installed

If PIP is not installed, proceed to the next step.

2. Install PIP (if not already installed)

1

2 //for window

3 python -m ensurepip --default -pip

4

5 //Linux/Mac (via package manager)

6 sudo apt install python3 -pip # For

Debian/Ubuntu

7 sudo yum install python3 -pip # For

CentOS/RHEL

8 brew install pip # For

macOS (using Homebrew)

9

10

11 // upgrade pip to the latest version

12 pip install --upgrade pip

13

14

Listing 19: Install PIP

3. Browse for Libraries: Visit PyPI(Python Pack-
age Index) to search for available libraries. Search
for the required library and find installation de-
tails.

4. Download and Install a Library

1 //use pip to install desired library

2 pip install library_name

3

4 // installing numpy

5 pip install numpy

6

7 // install multiple libraries at once

8 pip install numpy pandas matplotlib

9

10

Listing 20: Download and Install

5. Import the Library: Once installed, import the
library into your Python script:

1

2 import numpy as np # Importing

NumPy with an alias

3

4

Listing 21: Importing library

6. Use the Library: Use functions and features
provided by the library

1

2 array = np.array([1, 2, 3, 4])

3 print(array)

4

5

Listing 22: Using library

3 Develop Python concept

3.1 Writing Python syntax

3.1.1 Execute syntax

To execute Python code, you can use a code editor
with the appropriate setup, including a Python ex-
tension for syntax highlighting, debugging, and more.
Here’s how you can set it up:

1. Code Editor: A code editor is where you write
your Python code. Popular editors include: Vi-
sual Studio Code (VS Code), PyCharm, Sublime
Text, Atom, Notepad++ (for Windows), Thonny
(beginner-friendly). These editors make it easier
to write Python code and support syntax high-
lighting, auto-completion, and more.

2. Python Extension: To enable Python-specific
features such as syntax highlighting, auto-
completion, and running scripts, you need to in-
stall the Python extension in your code editor.

(a) For Visual Studio Code: Install VS Code.
Open VS Code, go to the Extensions panel
(on the left side), and search for Python.
Click Install on the official Python exten-
sion by Microsoft. Once installed, you’ll get
Python syntax support, linting, debugging,
and the ability to run scripts directly in the
editor.

(b) For PyCharm: comes with Python sup-
port built-in, so no additional installation is
needed.

(c) For Sublime Text: Install Package Con-
trol (if not already installed). Use Package
Control to install the Python package for
syntax highlighting and other features.

8 Python & Fundamental of AI page:8

https://pypi.org/


3.1 Writing Python syntax 3 DEVELOP PYTHON CONCEPT

3. Install Syntax for Running Python Code:
Once your code editor and Python extension are
set up, ensure you can run Python code properly.

(a) For VS Code: Install Python on your
system (if not already done). Open the
command palette (press Ctrl+Shift+P), and
type Python: Select Interpreter. Choose
the Python interpreter that matches your
installed version. Open a new Python file
(.py), and write your code. Run the Python
script by pressing F5 or using the Run but-
ton in the top-right corner.

(b) For PyCharm: Install Python and config-
ure it in Settings → Project Interpreter.
Create a new Python file (.py), write your
code, and press the Run button to execute
it.

(c) For Sublime Text: Ensure Python is
installed on your system. You can in-
stall a build system in Sublime to run
Python: Navigate to Tools → Build Sys-
tem → Python. Then press Ctrl+B
(Windows/Linux) or Cmd+B (Mac) to run
the code.

3.1.2 Use Command line

You can execute Python programs directly from the
command line using Python mode. Here’s a step-
by-step guide to help you write, compile, and execute
Python programs, including how to handle indenta-
tion.

1. Python Mode: When using the command line
or terminal, you can enter Python mode by typ-
ing python (or python3 depending on your system
setup). This opens an interactive Python shell
where you can write and execute Python code in-
teractively.

To enter Python mode:

1 python

2

3 //or

4 python3

5

Listing 23: python mode

In Python mode, you can type Python commands
directly, and they will be executed line by line.
For example:

1 >>> print("Hello , World!")

2 Hello , World!

3

4

Listing 24: example of python script

2. Writing a Python Program (in a Code Ed-
itor or Command Line): While you can write
code directly in Python mode, typically, you write
your program in a file using a code editor (e.g., VS
Code, Notepad++) or directly in the terminal.

To write a Python program in a file, open a text
editor, create a new file, and save it with the .py
extension (e.g., program.py).

Example code:

1 # Simple Python program

2 print("Hello , Python!")

3

4

Listing 25: simple program

3. Compile the Python Program: Unlike lan-
guages like C or Java, Python is an interpreted
language, so you don’t explicitly ”compile” the
program. Instead, you execute the program di-
rectly from the command line.

To ”compile” (i.e., run) your Python program,
simply execute it using the following command:

1 python program.py

2

3 //or

4 python3 program.py

5

6

Listing 26: Compiling file

This will run the Python script, and you will see
the output in the terminal.

4. Execute the Python Program: After creating
your .py file, executing it from the command line
will output the result of the program.

For example, executing program.py:

1

2 python program.py

3

4 // Output

5 Hello , Python!

6

7

Listing 27: example of compiling

5. Save the Program: To save your Python pro-
gram:

After writing the code in your text editor, go to
File → Save As. Save the file with the .py
extension, such as program.py. Make sure the
file is saved in a directory where you can easily
access it from the command line.

6. Indentation in Python: Python uses indenta-
tion (spaces or tabs) to define code blocks rather
than braces () as in other programming languages.
Correct indentation is crucial in Python.

Example of correctly indented Python code:

9 Python & Fundamental of AI page:9



3.2 Perform declaration 3 DEVELOP PYTHON CONCEPT

1

2 if True:

3 print("This is inside the if

statement") # Indentation inside

the block

4 x = 10

5 print(x)

6

7

Listing 28: Example of idented code

Incorrect indentation would cause an Indentation-
Error:

1

2 if True:

3 print("This is inside the if

statement") # Missing indentation

4

5

Listing 29: Example of incorect idented code

Make sure you use consistent indentation—either
spaces (usually 4 spaces per level) or tabs—but
don’t mix both. Python’s interpreter relies on this
to determine the scope of loops, functions, and
other control structures.

3.1.3 Apply comments

1. Purpose: Comments are used to explain code,
improve readability, and leave notes for develop-
ers. They are ignored by the interpreter

2. Creating a Comment: Comments begin with
and continue to the end of the line.

3. Single-line Comment: A comment on a single
line. Example:

1

2 # This is a single -line comment

Listing 30: single line comment

4. Multi-line Comment: Multiple single-line com-
ments or a string with triple quotes.

1

2 # This is a multi -line comment

3 # that spans across multiple lines.

Listing 31: Multi line comment

or

1

2 """

3 This is a multi -line comment

4 using triple quotes.

5 """

Listing 32: Multi line example 2

3.2 Perform declaration

3.2.1 Definition of Key terms

1. Declaration: In Python, declaration refers to
the process of defining a variable and assigning
it a value. Unlike some other languages, Python
does not require an explicit declaration of variable
types; they are inferred dynamically based on the
value assigned.

1

2 x = 10 # Declaring a variable ’x’

and assigning it the value 10

3

4

Listing 33: example of declaration

2. Variables: A variable is a symbolic name used to
store data in Python. Variables hold values, which
can be of various types, such as integers, strings,
or lists. Variables can be reassigned to different
values during the execution of a program

1

2 name = "Alice" # Variable ’name’

stores the string "Alice"

3 age = 25 # Variable ’age’

stores the integer 25

4

5

Listing 34: Variable

In Python, you don’t need to declare a variable
type explicitly, as it’s inferred dynamically based
on the assigned value

3.2.2 Assigning values

1. Single Value Assignment: You can assign a
single value to a variable.

1

2 x = 10 # Assigning the integer 10

to variable ’x’

3 name = "Alice" # Assigning the

string "Alice" to variable ’name’

4

5

Listing 35: Single value assignment

2. Multiple Values Assignment: You can assign
multiple values to multiple variables in a single
line. This is done using comma-separated as-
signment.

1

2 x, y, z = 1, 2, 3 # Assigning 1 to

’x’, 2 to ’y’, and 3 to ’z’

3

4 // alternatively

5 a = b = c = 5 # Assigning the value

5 to ’a’, ’b’, and ’c’

6

7

Listing 36: Multi value assignment

10 Python & Fundamental of AI page:10



3.3 Defferentiate data type 3 DEVELOP PYTHON CONCEPT

3.2.3 Types of variables

1. Local Variables: A local variable is defined in-
side a function and can only be accessed within
that function. It is not visible to other functions
outside its scope

1

2 def my_function ():

3 x = 10 # ’x’ is a local

variable

4 print(x)

5

6 my_function ()

7

8

Listing 37: Local variable

2. Global Variables: A global variable is de-
fined outside of any function and can be accessed
throughout the entire program. It is visible to all
functions.

1

2 x = 10 # ’x’ is a global variable

3

4 def my_function ():

5 print(x) # Accessing the global

variable ’x’

6

7 my_function ()

8

9

Listing 38: Global variable

3. Global Keyword: The global keyword allows
you to modify a global variable inside a function.
Without it, a function will create a local variable
instead of modifying the global one.

1

2 x = 10 # Global variable

3

4 def modify_global ():

5 global x # Declare ’x’ as

global to modify it

6 x = 20 # Modifying the global

variable

7

8 modify_global ()

9 print(x) # Output: 20

10

11

Listing 39: Global keyword

3.3 Defferentiate data type

1. Text: In Python, text data is represented by
the string type. Strings are sequences of charac-
ters enclosed in either single quotes (’) or double
quotes (”).

1

2 text = "Hello , World!" # A string (

text) data type

3

4

Listing 40: Example of Text

2. Sequence: Sequence types represent ordered col-
lections of elements. Common sequence types in-
clude:

(a) list: Ordered, mutable collections of items.
Example

1

2 fruits = ["apple", "banana"

, "cherry"] # A list

3

4

Listing 41: Example of list

(b) tuple: Ordered, immutable collections of
items. Example

1

2 coordinates = (4, 5) # A

tuple

3

4

Listing 42: Example of turple

3. Mapping: Mapping types store data in key-value
pairs. The most common mapping type in Python
is the dictionary.

1

2 person = {"name": "John", "age": 30}

# A dictionary

3

4

Listing 43: Example of Mapping

4. String: String data type is used to store text. It
is a sequence of characters, and strings are im-
mutable in Python

1

2 greeting = "Hello!" # A string

3

4

Listing 44: Example of String

5. Boolean: The boolean data type represents truth
values and has two possible values: True or
False.

1

2 is_active = True # A boolean value

3

4

Listing 45: Example of Boolean

11 Python & Fundamental of AI page:11



4 DEVELOP PYTHON APPLICATION

3.3.1 Define build-in data type

3.3.2 Numbers

Numeric data types in Python represent numbers.
There are three types:

1. int: Integer numbers. Example

1

2 age = 25 # An integer

3

4

Listing 46: Example of integer number

2. float: Floating-point numbers (decimals). Exam-
ple:

1

2 price = 19.99 # A floating -

point number

3

4

Listing 47: Example of float number

3. complex: Complex numbers with a real and
imaginary part. Example:

1

2 complex_number = 3 + 4j # A

complex number

3

4

5

Listing 48: Example of complex number

4 Develop Python application

4.1 Use of operators

4.1.1 Arthimetic operators

1

2 #Addition

3 result = 5 + 3 # result = 8

4

5 #Subtraction

6 result = 5 - 3 # result = 2

7

8 #Multiplication

9 result = 5 * 3 # result = 15

10

11 #Division

12 result = 5 / 2 # result = 2.5

13

14 #Modulus

15 result = 5 % 2 # result = 1

16

17 Exponentiation

18 result = 2 ** 3 # result = 8

19

20 #Floor Division: Divides and returns the

largest integer less than or equal to

the result.

21 result = 5 // 2 # result = 2

Listing 49: Arthimetic operation

4.1.2 Comparison operators

1

2 /* Equal (==): Checks if two values are

equal. */

3 result = 5 == 5 # result = True

4

5 /* Not Equal (!=): Checks if two values

are not equal. */

6 result = 5 != 3 # result = True

7

8 /* Greater Than (>): Checks if the left

value is greater than the right. */

9 result = 5 > 3 # result = True

10

11 /* Less Than (<): Checks if the left

value is less than the right. */

12 result = 3 < 5 # result = True

Listing 50: Comparison operations

4.1.3 Logical Operator

1. AND (and):Returns True if both conditions are
true

1

2 result = (5 > 3) and (7 > 4) #

result = True

3

4

Listing 51: And operation

2. OR (or): Returns True if at least one condition
is true.

1

2 result = (5 > 3) or (2 > 4) #

result = True

3

4

Listing 52: OR operation

3. NOT (not): Reverses the Boolean value (returns
True if the condition is false, and False if the
condition is true).

1

2 result = not(5 > 3) # result =

False

3

4

Listing 53: not operation

4.1.4 Other operators

You can explore more operator such as Assignment,
Betwise, Membership, and Identity operators online
via different resources such as w3schools.

12 Python & Fundamental of AI page:12

https://www.w3schools.com/python/default.asp


4.2 Determine collection of data 4 DEVELOP PYTHON APPLICATION

4.2 Determine collection of data

4.2.1 Definition of list

1. Definition: A list is a mutable, ordered collection
of items. It can contain elements of different types
(integers, strings, etc.).

1

2 my_list = [1, 2, 3, "apple"]

3

4

Listing 54: Example of list

2. Access Items: Items in a list can be accessed
using their index (starting from 0)

1

2 print(my_list [0]) # Output: 1

3

4

Listing 55: Accessing item

3. Negative Indexing: You can access items from
the end using negative indexing.

1

2 print(my_list [-1]) # Output: "apple

"

3

4

Listing 56: Negative indexing

4. Range of Index: Use slicing to access a range of
items.

1

2 print(my_list [1:3]) # Output: [2,

3]

3

4

Listing 57: Range of Index

5. Change Item Value: Modify an item by reas-
signing its value at a specific index.

1

2 my_list [1] = 10 # Change item at

index 1

3

4

Listing 58: Changing item value

6. Loop:

1

2 Loop through the list using a for

loop

3

4

Listing 59: Example of loop

7. Check if Item Exists: Use in to check if an item
is in the list

1

2 print("apple" in my_list) # Output:

True

3

4

Listing 60: Checking if item exist

8. List Length: Use len() to get the number of
items in a list.

1

2 print(len(my_list)) # Output: 4

3

4

Listing 61: Length of list

9. Add Items: Use append() to add an item to
the end of the list or insert() to add at a specific
index.

1

2 my_list.append("banana") # Adds "

banana" at the end

3 my_list.insert(2, "orange") # Adds

"orange" at index 2

4

5

Listing 62: Adding item

10. Remove Item: Use remove() to remove an item
by value or pop() to remove by index.

1

2 my_list.remove (10) # Removes first

occurrence of 10

3 my_list.pop(1) # Removes item at index

1

4

5

Listing 63: Removing Item

11. Copy a List: Use copy() or slicing to create a
copy of the list

1

2 new_list = my_list.copy() # Creates

a copy of the list

3

4

Listing 64: Copy a list

12. The List Constructor: Create a list using the
list() constructor.

1

2 new_list = list((1, 2, 3)) #

Creates a list from a tuple

3

4

Listing 65: Creating list

13. List Methods: Common list methods include
append(), remove(), pop(), insert(), sort(), and
reverse().

13 Python & Fundamental of AI page:13



4.2 Determine collection of data 4 DEVELOP PYTHON APPLICATION

1

2 my_list.sort() # Sorts the list in

ascending order

3

4

Listing 66: Example of list method

4.2.2 Definition of Tuple

1. Definition: A list is a mutable, ordered collec-
tion of items. It can contain elements of different
types (integers, strings, etc.).

1

2 my_list = [1, 2, 3, "apple"]

3

4

Listing 67: Example of tuple

2. Access Items: Items in a list can be accessed
using their index (starting from 0).

1

2 print(my_list [0]) # Output: 1

3

4

Listing 68: Accessing Item

3. Negative Indexing: You can access items from
the end using negative indexing

1

2 print(my_list [-1]) # Output: "apple

"

3

4

Listing 69: Negative indexing

4. Range of Index: Use slicing to access a range of
items

1

2 print(my_list [1:3]) # Output: [2,

3]

3

4

Listing 70: Range of Index

5. Change Item Value: Modify an item by reas-
signing its value at a specific index

1

2 my_list [1] = 10 # Change item at

index 1

3

4

Listing 71: Change item value

6. Loop: Loop through the list using a for loop

1

2 for item in my_list:

3 print(item)

4

5

Listing 72: Example of loop

7. Check if Item Exists: Use in to check if an
item is in the list

1

2 print("apple" in my_list) # Output:

True

3

4

Listing 73: Check if Item exist

8. List Length: Use len() to get the number of
items in a list

1

2 print(len(my_list)) # Output: 4

3

4

Listing 74: Length of list

9. Add Items: Use append() to add an item to
the end of the list or insert() to add at a specific
index.

1

2 my_list.append("banana") # Adds "

banana" at the end

3 my_list.insert(2, "orange") # Adds

"orange" at index 2

4

5

Listing 75: Adding item

10. Remove Item: Use remove() to remove an item
by value or pop() to remove by index.

1

2 my_list.remove (10) # Removes first

occurrence of 10

3 my_list.pop(1) # Removes item at

index 1

4

5

Listing 76: Removing item

11. Copy a List: Use copy() or slicing to create a
copy of the list

1

2 new_list = my_list.copy() # Creates

a copy of the list

3

4

Listing 77: Copy a list

12. The List Constructor: Create a list using the
list() constructor

14 Python & Fundamental of AI page:14



4.2 Determine collection of data 4 DEVELOP PYTHON APPLICATION

1

2 new_list = list((1, 2, 3)) #

Creates a list from a tuple

3

4

Listing 78: creating list

13. List Methods: Common list methods include
append(), remove(), pop(), insert(), sort(), and
reverse().

1

2 my_list.sort() # Sorts the list in

ascending order

3

4

Listing 79: list method

4.2.3 Definition of Set

1. Definition: A set is an unordered, mutable col-
lection of unique elements (no duplicates).

1

2 my_set = {1, 2, 3, "apple"}

3

4

Listing 80: Example of a set

2. Access Items: Sets do not support indexing, but
you can loop through items.

1

2 for item in my_set:

3 print(item)

4

5

Listing 81: Access Item

3. Add Items: Use add() to add a single item or
update() to add multiple items.

1

2 my_set.add (4) # Adds 4 to the set

3 my_set.update ([5, 6]) # Adds

multiple items

4

5

Listing 82: Add Item

4. Get the Length of a Set: Use len() to count
items in the set

1

2 print(len(my_set)) # Output: Number

of elements

3

4

Listing 83: checking length

5. Remove Item: Use remove() (raises an error if
item not found) or discard() (does not raise an
error).

1

2 my_set.remove (2) # Removes 2 from

the set

3 my_set.discard (10) # No error if 10

is not in the set

4

5

Listing 84: Removing item

6. Join Two Sets: Use union() or update()

1

2 set1 = {1, 2, 3}

3 set2 = {3, 4, 5}

4 new_set = set1.union(set2) #

Combines sets , removing duplicates

5

6

Listing 85: Joining two sets

7. The Set Constructor: Use set() to create a set
from another iterable (e.g., list or tuple).

1

2 my_set = set([1, 2, 3, 4])

3

4

Listing 86: Seting constructor

8. Set Methods: add(), remove(), discard(), pop(),
union(), update(), clear(), difference(), intersec-
tion().

1

2 set1 = {1, 2, 3}

3 set2 = {2, 3, 4}

4 intersection = set1.intersection(

set2) # Output: {2, 3}

5

6

Listing 87: Setting method

4.2.4 Definition of Dictionary

1. Definition: A dictionary is an unordered, muta-
ble collection of key-value pairs. Each key must
be unique.

1

2 my_dict = {"name": "John", "age":

30, "city": "Kigali"}

3

4

5

6

Listing 88: Example of Dictionary

2. Access Items: Use keys to retrieve values.

1

2 print(my_dict["name"]) # Output:

John

3 print(my_dict.get("age")) # Output: 30

4

5

15 Python & Fundamental of AI page:15



4.3 Understand condition statement 4 DEVELOP PYTHON APPLICATION

6

Listing 89: Accessing Item

3. Change Values: Modify a value by updating its
key.

1

2 my_dict["age"] = 31 # Updates age

to 31

3

4

5

Listing 90: Changes value

4. Loop Through a Dictionary: Iterate over keys,
values, or both

1

2 for key in my_dict:

3 print(key , my_dict[key]) # Prints

key -value pairs

4

5

6

Listing 91: Looping through dictionary

5. Check if a Key Exists: Use in to check if a key
is in the dictionary

1

2 print("name" in my_dict) # Output:

True

3

4

Listing 92: Checking if key exist

6. Dictionary Length: Use len() to count key-
value pairs.

1

2 print(len(my_dict)) # Output: 3

3

4

Listing 93: Checking length

7. Add Items: Assign a new key-value pair

1

2 my_dict["country"] = "Rwanda" #

Adds a new key -value pair

3

4

Listing 94: Adding item

8. Remove Items: Use pop() (removes a key) or
del

1

2 my_dict.pop("age") # Removes key ’

age’

3 del my_dict["city"] # Removes key ’city

’

4

5

Listing 95: Removing Item

9. Copy Dictionaries: Use copy() to create a copy

1

2 new_dict = my_dict.copy()

3

4

Listing 96: Copying dictionary

10. Nested Dictionaries: A dictionary inside an-
other dictionary.

1

2 my_dict = {"student": {"name": "

Alice", "age": 22}}

3 print(my_dict["student"]["name"]) #

Output: Alice

4

5

Listing 97: Nested dictionary

11. The dict() Constructor: Create a dictionary
using dict()

1

2 my_dict = dict(name="John", age=30,

city="Kigali")

3

4

Listing 98: Using dict() constructor

12. Dictionary Methods: keys(), values(), items(),
pop(), update(), clear()

1

2 print(my_dict.keys()) # Output:

dict_keys([’name ’, ’age ’, ’city ’])

3

4

Listing 99: Example of dictionary method

4.3 Understand condition statement

4.3.1 Explaination of Logical condition

Logical conditions are used in if-else statements and
loops to control the flow of a program based on condi-
tions.

1. Equals (==): Checks if two values are equal

1

2 if 5 == 5:

3 print("Equal") # Output: Equal

4

5

Listing 100: Equal condition

2. Not Equals (!=): Checks if two values are dif-
ferent

1

2 if 5 != 3:

3 print("Not Equal") # Output: Not

Equal

4

5

Listing 101: Not equal condition

16 Python & Fundamental of AI page:16



4.4 Identify other functions and classes 4 DEVELOP PYTHON APPLICATION

3. Less Than (¡): Checks if the left value is smaller
than the right.

1

2 if 3 < 5:

3 print("Less than") # Output: Less

than

4

5

Listing 102: Less than condition

4. Greater Than (¿): Checks if the left value is
larger than the right.

1

2 if 7 > 4:

3 print("Greater than") # Output:

Greater than

4

5

Listing 103: greater than condition

These conditions are commonly used in decision-
making structures like if, elif, else to execute dif-
ferent blocks of code based on conditions.

4.3.2 Eplaination of IF statemnt

The if statement is used for decision-making in
Python. It executes a block of code if a specified con-
dition is True.

1. Indentation: Python uses indentation (spaces or
tabs) to define blocks of code inside the if, elif,
and else statements.

1

2 if True:

3 print("This is inside the if

block") # Indented correctly

4

5

Listing 104: Using Identation

2. IF Statement (if): Executes a block of code if
the condition is True

1

2 age = 18

3 if age >= 18:

4 print("You are an adult") #

Output: You are an adult

5

6

Listing 105: example of If statement

3. ELIF Statement (elif): Checks another condi-
tion if the previous if condition was False.

1

2 age = 16

3 if age > 18:

4 print("Adult")

5 elif age == 16:

6 print("You are 16") # Output:

You are 16

7

8

Listing 106: Example of ELIF statement

4. ELSE Statement (else):

1

2 age = 15

3 if age > 18:

4 print("Adult")

5 elif age == 16:

6 print("You are 16")

7 else:

8 print("You are a minor") #

Output: You are a minor

9

10

Listing 107: Example of ELSE statement

5. Shorthand IF: A single-line if statement

1

2 if 5 > 3: print("5 is greater than 3

") # Output: 5 is greater than 3

3

4

Listing 108: Shorthand IF condition

6. Shorthand IF. . . ELSE: A compact way to
write if-else in one line

1

2 print("Adult") if age >= 18 else

print("Minor") # Output: Minor

3

4

Listing 109: Shorthand IF..ELSE

The if-elif-else structure is essential for handling
conditional logic in Python!

4.4 Identify other functions and classes

4.4.1 Use of Looping

Looping is used to execute a block of code multiple
times until a specific condition is met.

1. For Loop: Iterates over a sequence (list, tuple,
dictionary, string, etc.).

1

2 for i in range (5):

3 print(i) # Output: 0 1 2 3 4

4

5

Listing 110: example of for looop

2. While Loop: Repeats as long as the condition is
True.

17 Python & Fundamental of AI page:17



4.4 Identify other functions and classes 4 DEVELOP PYTHON APPLICATION

1

2 x = 0

3 while x < 5:

4 print(x)

5 x += 1 # Output: 0 1 2 3 4

6

7

Listing 111: example of while loop

3. Continue Statement: Skips the rest of the cur-
rent loop iteration and moves to the next.

1

2 for i in range (5):

3 if i == 2:

4 continue # Skips 2

5 print(i) # Output: 0 1 3 4

6

7

Listing 112: continue statement

4. Break Statement: Exits the loop completely
when a condition is met

1

2 for i in range (5):

3 if i == 3:

4 break # Stops at 3

5 print(i) # Output: 0 1 2

6

7

Listing 113: Break statement

4.4.2 Definition of Functions

A function is a block of reusable code that performs a
specific task. Functions help in code organization and
reusability.

1. Creating a Function: Use the def keyword to
define a function.

1

2 def greet():

3 print("Hello , Welcome!")

4

5

Listing 114: Defining a function

2. Calling a Function: Execute a function by using
its name followed by parentheses ().

1

2 greet() # Output: Hello , Welcome!

3

4

Listing 115: calling a function

3. Arguments: Functions can take inputs (param-
eters) to perform operations

1

2 def add(a, b):

3 return a + b

4 print(add(3, 5)) # Output: 8

5

6

Listing 116: Arguments of function

4. Default Parameter Value: If no value is pro-
vided, the default is used

1

2 def greet(name="Guest"):

3 print(f"Hello , {name}!")

4 greet() # Output: Hello , Guest!

5 greet("John") # Output: Hello , John

!

6

7

Listing 117: Default paramater value

5. Passing a List as an Argument: Functions
can accept lists as arguments.

1

2 def print_list(items):

3 for item in items:

4 print(item)

5 print_list (["Apple", "Banana", "

Cherry"])

6

7

Listing 118: Passing a list argument

6. Lambda (Anonymous Function): A small,
one-line function using lambda

1

2 square = lambda x: x * x

3 print(square (4)) # Output: 16

4

5

Listing 119: Using Lambda

7. Arrays: Arrays in Python are implemented using
lists

1

2 numbers = [1, 2, 3, 4, 5]

3 print(numbers [2]) # Output: 3

4

5

Listing 120: Example of Arrays

4.4.3 Definition of Classes/Objects

A class is a blueprint for creating objects, and an ob-
ject is an instance of a class. Classes encapsulate data
and functions into a single entity.

1. Create Class: Define a class using the class key-
word.

18 Python & Fundamental of AI page:18



4.4 Identify other functions and classes 4 DEVELOP PYTHON APPLICATION

1

2 class Person:

3 def __init__(self , name , age):

4 self.name = name

5 self.age = age

6

7

Listing 121: Defining a class

2. Create Object: Instantiate a class to create an
object

1

2 person1 = Person("John", 30)

3

4

Listing 122: Creating Object

3. Object Methods: Functions defined inside a
class to perform operations on its objects.

1

2 class Person:

3 def greet(self):

4 print(f"Hello , {self.name}")

5 person1 = Person("John", 30)

6 person1.greet () # Output: Hello ,

John

7

8

Listing 123: Object method

4. The self Parameter: self refers to the instance
of the class, allowing access to its attributes and
methods.

1

2 class Person:

3 def __init__(self , name , age):

4 self.name = name

5 self.age = age

6

7

Listing 124: Using self parameter

5. Modify Object Property: Change the value of
an object’s property

1

2 person1.age = 31 # Modify the age

of person1

3

4

Listing 125: Modifying object property

6. Delete Object Property: Use del to delete an
object’s property

1

2 del person1.age # Deletes the ’age’

attribute of person1

3

4

Listing 126: Deleting object property

7. Delete Object: Use del to delete the object it-
self.

1

2 del person1 # Deletes the object

person1

3

4

Listing 127: Deleting object

8. Pass Statement: A placeholder for an empty
code block (does nothing).

1

2 class Person:

3 pass # Empty class

4

5

Listing 128: example of Pass statement

9. Inheritance: Inheritance allows a class (child
class) to inherit properties and methods from an-
other class (parent class).

1

2 class Animal:

3 def speak(self):

4 print("Animal speaks")

5

6 class Dog(Animal):

7 def bark(self):

8 print("Dog barks")

9

10 dog = Dog()

11 dog.speak() # Output: Animal speaks

12 dog.bark() # Output: Dog barks

13

14

Listing 129: example of inheritance

10. Iterators: Iterators are objects that allow
traversing through all the elements in a collection.
A class can implement iter () and next ()
to make it an iterator.

1

2 class Counter:

3 def __init__(self , low , high):

4 self.current = low

5 self.high = high

6

7 def __iter__(self):

8 return self

9

10 def __next__(self):

11 if self.current > self.high:

12 raise StopIteration

13 else:

14 self.current += 1

15 return self.current - 1

16

17 counter = Counter(1, 3)

18 for number in counter:

19 print(number) # Output: 1 2 3

20

21

22

Listing 130: Example of iterator

19 Python & Fundamental of AI page:19



5 DEVELOP PYTHON SCRIPTING

4.4.4 Definition of other tools

1. Python Scope: Scope refers to the region of
a program where a variable or name is recog-
nized. In Python, variables can have global or lo-
cal scope. Local Scope: Variables defined within
a function. Global Scope: Variables defined out-
side any function.

1

2 x = 10 # Global scope

3

4 def my_function ():

5 y = 5 # Local scope

6 print(x, y)

7

8

Listing 131: global scope

2. Python Modules: A module is a file containing
Python code, which can define functions, classes,
and variables. You can import a module using the
import statement.

1

2 import math

3 print(math.sqrt (16)) # Output: 4.0

4

5

Listing 132: Example of a Module

3. Python Dates: The datetime module allows
working with dates and times

1

2 import datetime

3 current_date = datetime.date.today ()

4 print(current_date) # Output:

current date (e.g., 2025 -02 -04)

5

6

Listing 133: example of date module

4. Python JSON: The json module is used to
parse JSON (JavaScript Object Notation) data
into Python objects and vice versa.

1

2 import json

3

4 # Convert a dictionary to JSON

5 data = {"name": "John", "age": 30}

6 json_data = json.dumps(data)

7 print(json_data) # Output: {"name":

"John", "age": 30}

8

9

Listing 134: json module

5. Python PIP: PIP is the package installer for
Python. It is used to install libraries and pack-
ages from the Python Package Index (PyPI).

1 pip install requests # Install the

’requests ’ library

2

3

Listing 135: Installing PIP

6. Python Try...Except: Used for handling excep-
tions or errors in code, allowing the program to
continue running even when an error occurs.

1

2 try:

3 x = 10 / 0 # Division by zero

4

5 except ZeroDivisionError:

6 print("Cannot divide by zero!")

# Output: Cannot divide by zero!

7

8

Listing 136: example of Try .. Except

7. User Input: The input() function allows the
user to enter data, which is returned as a string.

1

2 name = input("Enter your name: ")

3 print(f"Hello , {name}!")

4

5

Listing 137: Allowing User input

5 Develop python scripting

5.1 Perform file handling

5.1.1 Practice to read file

Python provides built-in functions to handle files. You
can open, read, write, and close files using various
methods.

1. Open a File: Use the open() function to open a
file. You can specify the mode (read, write, etc.)
when opening a file.

1

2 file = open("example.txt", "r") #

Open file in read mode

3

4

Listing 138: Opening file

2. Read a File: Once the file is open, you can read
its contents using methods like: read(): Reads
the entire file as a string. readline(): Reads the
next line from the file. readlines(): Reads all
lines of the file and returns them as a list.

1

2 content = file.read() # Read the

entire file

3 print(content)

4

20 Python & Fundamental of AI page:20



5.1 Perform file handling 5 DEVELOP PYTHON SCRIPTING

5

Listing 139: Reading file

3. File Permissions: When opening a file, you can
specify its mode. The most common modes are:
”r”: Read (default mode, opens the file for read-
ing). ”w”: Write (opens the file for writing,
creates a new file or overwrites an existing one).
”a”: Append (opens the file for writing, append-
ing data at the end). ”rb”, ”wb”, etc.: Read or
write in binary mode (useful for binary files)

1

2 # Opening file in read -only mode

3 file = open("example.txt", "r")

4

5 # Trying to open file with

restricted permission (write access)

in read mode

6 try:

7 file = open("restricted_file.txt

", "r") # Error occurs if no read

permission

8 except PermissionError:

9 print("Permission denied to read

the file.")

10

11

Listing 140: File permission

4. Closing the File: It’s important to close the
file after you’re done with it to free up system
resources

1

2 file.close() # Close the file after

reading

3

4

Listing 141: closing file

5. Using with to Handle Files: It is recom-
mended to use the with statement to handle files,
as it automatically closes the file when done

1

2 with open("example.txt", "r") as

file:

3 content = file.read()

4 print(content) # No need to

manually close the file

5

6

Listing 142: Using file

6. Example Code for Reading a File:

1

2 # Open the file in read mode

3 with open("example.txt", "r") as

file:

4 content = file.read() # Read

the entire content

5 print(content) # Display file

contents

6

7

Listing 143: Reading file

By using these methods, you can manage files effi-
ciently and ensure proper permission handling in
your Python programs.

5.1.2 Practice to read file

Python allows you to create new files and write to both
new and existing files using different file modes. Here’s
how you can do it:

1. Create a New File: To create a new file, you
can use the ”w” (write) mode. If the file already
exists, this mode will overwrite the existing con-
tent.

Example to create a new file and write to it:

1

2 with open("new_file.txt", "w") as

file:

3 file.write("This is a new file.\n")

4 file.write("It contains some text.\n

")

5

6

Listing 144: Creating new file

This will create a file named new file.txt in the
current directory and write two lines of text into
it. If the file already exists, it will be overwritten.

2. Write to an Existing File: If you want to add
content to an existing file without overwriting it,
you can open the file in ”a” (append) mode.

Example to write to an existing file (without over-
writing):

1

2 with open("existing_file.txt", "a")

as file:

3 file.write("Adding more content to

the file.\n")

4 file.write("This will append new

data.\n")

5

6

Listing 145: Writing to an existing file

3. Example of Creating and Writing to Files:

1

2 # Creating and writing to a new file

3 with open("new_file.txt", "w") as

file:

4 file.write("This is the first

line of the file.\n")

5 file.write("This is the second

line.\n")

6

7 # Writing to an existing file (

appending)

21 Python & Fundamental of AI page:21



5.2 Determine Python Libraries 5 DEVELOP PYTHON SCRIPTING

8 with open("existing_file.txt", "a")

as file:

9 file.write("This is a new line

added to the file.\n")

10

11

Listing 146: Creating and write file

5.1.3 Pactice to delete file

Python provides several ways to delete files and folders
using the os and os.path modules.

1. Remove File: You can remove a file using the
os.remove() function. It deletes the specified file.

Example to remove a file:

1

2 import os

3

4 # Remove a file

5 os.remove("file_to_delete.txt") #

This will delete the file

6

7

Listing 147: Removing file

If the file doesn’t exist, this will raise a FileNot-
FoundError.

2. Check if a File Exists: Before deleting a file,
you might want to check if it exists. You can do
this using the os.path.exists() function.

Example to check if a file exists before removing
it:

1

2 import os

3

4 # Check if the file exists

5 if os.path.exists("file_to_delete.

txt"):

6 os.remove("file_to_delete.txt")

7 print("File deleted successfully

.")

8 else:

9 print("The file does not exist."

)

10

11

Listing 148: Checking if file exist before

3. Delete Folder: To delete an empty folder,
you can use os.rmdir(). If the folder con-
tains files or other directories, you need to use
shutil.rmtree() to remove it along with all its
contents.

1

2 import os

3

4 # Remove an empty directory

5 os.rmdir("empty_folder")

6

7

8 #Example to remove a non -empty

folder:

9 import shutil

10

11 # Remove a folder and all its

contents

12 shutil.rmtree("folder_to_delete")

13

14

Listing 149: Deleting file

4. Full Example for File and Folder Deletion:

1

2 import os

3 import shutil

4

5 # Remove file if it exists

6 file_path = "file_to_delete.txt"

7 if os.path.exists(file_path):

8 os.remove(file_path)

9 print(f"{file_path} deleted

successfully.")

10 else:

11 print(f"{file_path} does not

exist.")

12

13 # Remove an empty folder if it

exists

14 folder_path = "empty_folder"

15 if os.path.exists(folder_path) and

os.path.isdir(folder_path):

16 os.rmdir(folder_path)

17 print(f"Folder {folder_path}

deleted successfully.")

18 else:

19 print(f"{folder_path} does not

exist or is not a folder.")

20

21 # Remove a non -empty folder

22 non_empty_folder = "folder_to_delete

"

23 if os.path.exists(non_empty_folder)

and os.path.isdir(non_empty_folder):

24 shutil.rmtree(non_empty_folder)

25 print(f"Non -empty folder {

non_empty_folder} deleted

successfully.")

26 else:

27 print(f"{non_empty_folder} does

not exist or is not a folder.")

28

29

Listing 150: full example

5.2 Determine Python Libraries

Here are brief explanations of some essential Python
libraries commonly used for data manipulation, scien-
tific computing, and machine learning:

1. Numpy: Numpy is a powerful library for numer-
ical computing in Python. It provides support
for large, multi-dimensional arrays and matrices,
along with a collection of mathematical functions
to operate on them. Common Use: Numerical
computations, linear algebra, data manipulation,
and matrix operations

22 Python & Fundamental of AI page:22



5.3 Interact with database 5 DEVELOP PYTHON SCRIPTING

1

2 import numpy as np

3 arr = np.array ([1, 2, 3])

4 print(np.sum(arr)) # Output: 6

5

6

Listing 151: Using Numerical

2. Pandas: Pandas is a data manipulation and
analysis library. It provides data structures like
DataFrame and Series to handle and analyze
structured data easily.

Common Use: Data manipulation, clean-
ing, and analysis. It is ideal for handling tabular
data (rows and columns).

1

2 import pandas as pd

3 data = {’Name’: [’John’, ’Anna’], ’

Age’: [28, 24]}

4 df = pd.DataFrame(data)

5 print(df)

6

7

Listing 152: Example of using pandas

3. Matplotlib: Matplotlib is a plotting library
used to create static, interactive, and animated
visualizations in Python. It is widely used for
data visualization.

Common Use: Plotting graphs such as
line charts, bar charts, histograms, scatter plots,
etc.

1

2 import matplotlib.pyplot as plt

3 x = [1, 2, 3, 4]

4 y = [10, 20, 25, 30]

5 plt.plot(x, y)

6 plt.show() # Display line plot

7

8

Listing 153: example of matplotlib

4. SciPy: SciPy is an open-source library used
for scientific and technical computing. It builds
on Numpy and provides additional functionality
for optimization, integration, interpolation,
eigenvalue problems, and other advanced math
and statistics operations.

Common Use: Scientific computing tasks
such as optimization, signal processing, and
statistics.

1

2 from scipy import stats

3 data = [2, 3, 4, 5, 6]

4 mean = stats.tmean(data)

5 print(mean) # Output: 4.0

6

7

Listing 154: EXample of scipy

5. Scikit-Learn: Scikit-Learn is a machine learning
library that provides simple and efficient tools
for data mining and data analysis. It supports
various machine learning algorithms for classi-
fication, regression, clustering, dimensionality
reduction, and more.

Common Use: Building and deploying
machine learning models (e.g., decision trees,
linear regression, k-means).

1

2 from sklearn.linear_model import

LinearRegression

3 model = LinearRegression ()

4 X = [[1], [2], [3], [4]]

5 y = [1, 2, 3, 4]

6 model.fit(X, y)

7 print(model.predict ([[5]])) #

Predict for input 5

8

9

Listing 155: example of scikit-learn

5.3 Interact with database

5.3.1 Python Mysql commands

Below are the key commands and steps for interacting
with a MySQL database using Python. The mysql-
connector-python library is commonly used to connect
to MySQL databases from Python.

1. Install MySQL Connector: To interact with
MySQL in Python, you need to install the MySQL
connector library. You can install it using pip:

1

2 pip install mysql -connector -python

3

4

Listing 156: Installing mysql connector

2. Test MySQL Connector: Ensure the MySQL
connector is installed correctly by testing the con-
nection.

1

2 import mysql.connector

3

4 try:

5 connection = mysql.connector.

connect(

6 host="localhost",

7 user="root", # Replace with

your MySQL username

8 password="your_password" #

Replace with your MySQL password

9 )

10 if connection.is_connected ():

23 Python & Fundamental of AI page:23



5.3 Interact with database 5 DEVELOP PYTHON SCRIPTING

11 print("Connected to MySQL

server")

12 except mysql.connector.Error as err:

13 print(f"Error: {err}")

14

15

Listing 157: testing connector

3. Create Connection: You can create a connec-
tion to the MySQL server by providing the re-
quired parameters such as host, user, password,
and database name.

1

2 connection = mysql.connector.connect

(

3 host="localhost",

4 user="root",

5 password="your_password",

6 database="test_db" # Optional , if

you want to connect to a specific

database)

7

8

Listing 158: Creating connection

4. Create Database: To create a new database:

1

2 cursor = connection.cursor ()

3 cursor.execute("CREATE DATABASE

my_database")

4 cursor.close()

5

6

Listing 159: Creating database

5. Create Table: You can create a table inside a
database.

1

2 cursor = connection.cursor ()

3 cursor.execute("""

4 CREATE TABLE users (

5 id INT AUTO_INCREMENT

PRIMARY KEY ,

6 name VARCHAR (100) ,

7 age INT

8 )

9 """)

10 cursor.close()

11

12

Listing 160: Creating a table

6. Insert Data: Insert data into a table.

1

2 cursor = connection.cursor ()

3 cursor.execute("INSERT INTO users (

name , age) VALUES (%s, %s)", ("John

Doe", 30))

4 connection.commit () # Commit

changes to the database

5 cursor.close()

6

7

Listing 161: Inserting data

7. Select Data: To retrieve data from a table.

1

2 cursor = connection.cursor ()

3 cursor.execute("SELECT * FROM users"

)

4 result = cursor.fetchall ()

5 for row in result:

6 print(row)

7 cursor.close()

8

9

Listing 162: Selecting data

8. Delete Data: To delete data from a table.

1

2 cursor = connection.cursor ()

3 cursor.execute("DELETE FROM users

WHERE id = %s", (1,))

4 connection.commit ()

5 cursor.close()

6

7

Listing 163: Deleting data

9. Where Condition: Using a WHERE condition
to filter data.

1

2 cursor = connection.cursor ()

3 cursor.execute("SELECT * FROM users

WHERE age > %s", (25,))

4 result = cursor.fetchall ()

5 for row in result:

6 print(row)

7 cursor.close()

8

9

Listing 164: WHERE condition

10. Order By: To order the results by a column.

1

2 cursor = connection.cursor ()

3 cursor.execute("SELECT * FROM users

ORDER BY name ASC")

4 result = cursor.fetchall ()

5 for row in result:

6 print(row)

7 cursor.close()

8

9

Listing 165: Order by condition

11. Drop Table: To drop (delete) a table.

1

2 cursor = connection.cursor ()

3 cursor.execute("DROP TABLE IF EXISTS

users")

4 cursor.close()

5

6

Listing 166: Droping table

24 Python & Fundamental of AI page:24



5.3 Interact with database 5 DEVELOP PYTHON SCRIPTING

12. Update Data: To update an existing record in
the table.

1

2 cursor = connection.cursor ()

3 cursor.execute("UPDATE users SET age

= %s WHERE name = %s", (35, "John

Doe"))

4 connection.commit () # Commit

changes to the database

5 cursor.close()

6

7

Listing 167: Updating table

13. Limit: Use LIMIT to restrict the number of rows
returned.

1

2 cursor = connection.cursor ()

3 cursor.execute("SELECT * FROM users

LIMIT 2")

4 result = cursor.fetchall ()

5 for row in result:

6 print(row)

7 cursor.close()

8

9

Listing 168: LIMIT condition

14. Join: Perform a join between two tables.

1

2 cursor = connection.cursor ()

3 cursor.execute("""

4 SELECT orders.id , users.name ,

orders.amount

5 FROM orders

6 JOIN users ON orders.user_id =

users.id

7 """)

8 result = cursor.fetchall ()

9 for row in result:

10 print(row)

11 cursor.close()

12

13

Listing 169: Join operation

15. Make sure to close the cursor and the connection
after executing operations::

1

2 cursor.close()

3 connection.close ()

4

5

Listing 170: closing connection

These commands allow you to perform various
operations like creating databases and tables, in-
serting, updating, deleting, and selecting data, as
well as more advanced queries like using condi-
tions and joins.

5.3.2 MongoDB

MongoDB is a NoSQL database that stores data in
flexible, JSON-like documents. Below are the key com-
mands and operations for working with MongoDB in
Python using the pymongo library.

1. Install PyMongo Driver: To interact with
MongoDB using Python, install the pymongo li-
brary

1

2 pip install pymongo

3

4

Listing 171: Installing pymango

2. Create Connection to MongoDB: Connect to
a local MongoDB server:

1

2 import pymongo

3

4 client = pymongo.MongoClient("

mongodb :// localhost :27017/")

5

6

Listing 172: creating connection

You can also connect to a remote MongoDB server
by replacing ”localhost:27017” with the server’s
address

3. Create Database: MongoDB does not require
explicitly creating a database. It is created when
you first store data in it.

1

2 db = client["my_database"]

3

4

Listing 173: connecting to remote mongodb

4. Create Collection (Equivalent to Table
in SQL): Collections are created automatically
when you insert the first document (record).

1

2 collection = db["users"]

3

4

Listing 174: creating collection

5. Insert Data

(a) Single document:

1

2 user = {"name": "John Doe",

"age": 30}

3 collection.insert_one(user)

4

5

Listing 175: single document

25 Python & Fundamental of AI page:25



5.3 Interact with database 5 DEVELOP PYTHON SCRIPTING

(b) Multiple documents:

1

2 users = [

3 {"name": "Alice", "age":

25},

4 {"name": "Bob", "age": 28},

5 ]

6 collection.insert_many(users)

7

8

Listing 176: multiple document

6. Select Data (Retrieve Documents):

(a) Find all documents:

1

2 for user in collection.find

():

3 print(user)

4

5

Listing 177: Retrieving document

(b) Find specific fields:

1

2 for user in collection.find

({}, {"_id": 0, "name": 1}):

3 print(user)

4

5

Listing 178: finding specific field

7. Delete Data

(a) Delete one document:

1

2 collection.delete_one ({"

name": "John Doe"})

3

4

Listing 179: Deleting one document

(b) Delete multiple documents:

1

2 collection.delete_many ({"

age": {"$lt": 30}}) # Delete

users younger than 30

3

4

Listing 180: Delete multiple documents

8. Where Condition (Query with Filters):
Find users older than 25

1

2 for user in collection.find({"age":

{"$gt": 25}}):

3 print(user)

4

5

Listing 181: Using WHERE condition

9. Order By (Sorting Data): Sort users by age
in ascending order

1

2 for user in collection.find().

sort("age", 1): # 1 for ascending ,

-1 for descending

3 print(user)

4

5

Listing 182: using ORDER BY condition

10. Drop Collection (Equivalent to Drop Table
in SQL)

1

2 collection.drop() # Deletes the

entire "users" collection

3

4

Listing 183: Droping collection

11. Update Data

(a) Update a single document:

1

2 collection.update_one ({"

name": "Alice"}, {"$set": {"age

": 26}})

3

4

Listing 184: updating single document

(b) Update multiple documents:

1

2 collection.update_many ({"

age": {"$lt": 30}}, {"$set": {"

status": "young"}})

3

4

Listing 185: Updating multiple document

12. Limit Results: Limit the number of retrieved
documents

1

2 for user in collection.find().limit

(2):

3 print(user)

4

5

Listing 186: Using LIMIT condition

13. Join (Aggregation in MongoDB): MongoDB
does not support SQL-style joins, but you can
achieve similar results using aggregation:

1

2 db.orders.insert_many ([

3 {"user_id": 1, "product": "Laptop"},

4 {"user_id": 2, "product": "Phone"}

5 ])

6

7 pipeline = [

26 Python & Fundamental of AI page:26



6 DEVELOP AI BASED APPLICATIONS

8 {

9 "$lookup": {

10 "from": "users",

11 "localField": "user_id",

12 "foreignField": "_id",

13 "as": "user_info"

14 }

15 }

16 ]

17

18 for order in db.orders.aggregate(

pipeline):

19 print(order)

20

21

Listing 187: Using join operation

6 Develop AI based applications

6.1 Introduce AI

6.1.1 Definitiona of Key terms:

1. What is AI
Artificial Intelligence (AI) refers to the simulation
of human intelligence in machines that are pro-
grammed to think, learn, and solve problems. AI
encompasses various subfields, including machine
learning, natural language processing, computer
vision, and robotics. It enables systems to per-
form tasks such as decision-making, pattern recog-
nition, and automation.

2. History of AI
The history of AI dates back to the 1950s when
Alan Turing introduced the concept of machine
intelligence. The field formally began in 1956 at
the Dartmouth Conference, where researchers ex-
plored ways to develop machines that could simu-
late human intelligence. Over the decades, AI has
evolved through different phases: early symbolic
AI (1950s-1970s), expert systems (1980s), statis-
tical machine learning (1990s-2000s), and deep
learning (2010s-present). Today, AI is driven by
advancements in big data, computing power, and
neural networks1.

3. Benefits of AI
AI offers numerous benefits across various indus-
tries, including:

(a) Automation: AI automates repetitive
tasks, improving efficiency and reducing hu-
man effort.

(b) Improved Decision-Making: AI-powered
analytics enhance data-driven decision-
making in fields like healthcare and finance.

1You can read more about the history of AI by clicking here

Figure 1: AI in every sector of life

Figure 2: AI atmosphere

(c) Personalization: AI enables personalized
recommendations in services like e-commerce
and entertainment.

(d) Healthcare Advancements: AI assists
in medical diagnosis, drug discovery, and
robotic surgeries.

(e) Enhanced Security: AI-driven surveil-
lance and cybersecurity systems detect
threats in real time.

(f) Economic Growth: AI boosts produc-
tivity, innovation, and job opportunities in
technology-driven sectors.

AI continues to revolutionize industries by in-
creasing efficiency, reducing costs, and enabling
new technological advancements.

6.1.2 Types of AI

1. Weak AI (Narrow AI)
Weak AI, also known as Narrow AI, refers to ar-
tificial intelligence systems that are designed to
perform specific tasks without possessing general
intelligence. These AI models operate under pre-
defined rules and cannot think, reason, or under-
stand beyond their programming. Examples in-
clude:

(a) Virtual Assistants (e.g., Siri, Alexa, Google
Assistant)

(b) Recommendation Systems (e.g., Netflix,
YouTube, Amazon)

27 Python & Fundamental of AI page:27

https://www.tableau.com/data-insights/ai/history


6.1 Introduce AI 6 DEVELOP AI BASED APPLICATIONS

(c) Autonomous Vehicles (self-driving cars use
AI for navigation)

(d) Chatbots (used in customer service)

2. Strong AI (General AI)
Strong AI, also known as Artificial General Intel-
ligence (AGI), refers to AI systems that possess
human-like cognitive abilities, including reason-
ing, problem-solving, and learning across multiple
domains. Unlike Weak AI, Strong AI can under-
stand, learn, and adapt to new situations without
specific programming. AGI remains theoretical,
as no system has yet achieved true human-level
intelligence. If developed, Strong AI could:

(a) Perform any intellectual task that a human
can

(b) Exhibit reasoning and self-awareness

(c) Adapt to new problems without retraining

While Weak AI is widely used today, Strong AI
is still a subject of research and remains a future
goal in AI development.

6.1.3 Real life example of AI

1. Self-Driving Cars: AI-powered autonomous ve-
hicles use computer vision, machine learning, and
sensor data (LiDAR, cameras) to navigate roads,
detect obstacles, and make real-time driving deci-
sions. Example: Tesla Autopilot, Waymo

Figure 3: Selving Driving Car

2. Navigation Systems: AI enhances GPS-based
navigation by analyzing traffic patterns, road con-
ditions, and user preferences to provide optimal
routes. Example: Google Maps, Waze

3. Chatbots : AI-driven chatbots assist users in
customer service, answering queries, and au-
tomating conversations using natural language
processing (NLP). Example: ChatGPT, Siri,
Alexa, Google Assistant, banking chatbots

Figure 4: Navigation Systems

Figure 5: Chatbot

4. Human vs. Computer Games: AI competes
against humans in video games, learning strate-
gies and adapting gameplay. Example: Deep-
Mind’s AlphaGo (beat human Go cham-
pions), OpenAI Five (Dota 2), IBM Deep
Blue (chess vs. Garry Kasparov)

5. Sophia Robot: A humanoid robot developed by
Hanson Robotics that uses AI for facial recogni-
tion, speech processing, and human-like interac-
tions. Sophia can engage in conversations and has
been granted honorary citizenship in Saudi Ara-
bia.

6. Turing Machine: Proposed by Alan Turing,
this theoretical AI model laid the foundation for
modern computing and artificial intelligence by
demonstrating how machines could process and
simulate human decision-making.

7. More AI Examples in Daily Life

(a) Facial Recognition: Used in security sys-
tems, smartphones (Face ID).

(b) Healthcare AI: AI detects diseases, assists
in diagnosis (IBM Watson, AI-powered X-
ray analysis).

(c) Financial AI: AI predicts stock markets,
detects fraud (AI trading algorithms, fraud
detection in banks).

28 Python & Fundamental of AI page:28



6.1 Introduce AI 6 DEVELOP AI BASED APPLICATIONS

Figure 6: facial and Key points detection

Figure 7: Face detection

(d) E-commerce AI: Personalized recommen-
dations (Amazon, Netflix).

(e) Smart Home Devices: AI-powered home
automation (Google Nest, Amazon Echo).

AI continues to revolutionize industries by im-
proving efficiency, accuracy, and automation
across various sectors.

6.1.4 Future of AI

1. Multary Bots (Advanced AI Assistants):
AI-powered bots will become more advanced, ca-
pable of performing complex tasks across multi-
ple fields, from military operations to scientific
research and daily assistance. These bots will in-
tegrate natural language processing (NLP),
robotics, and deep learning for seamless hu-
man interaction.

2. The Perfect Lawyer : AI will revolutionize the
legal industry by analyzing vast amounts of case
law, automating legal research, predicting case
outcomes, and assisting in contract drafting. AI-
powered systems will provide legal advice, reduc-
ing the need for human intervention in routine
legal matters.

Figure 8: Keypoints detection

Figure 9: Changi Airport Singapore facial recognition
system

3. AI in Music: AI will compose music, enhance
sound production, and personalize user experi-
ences. Tools like AI-generated lyrics, virtual
musicians, and real-time music customiza-
tion will become mainstream. AI-powered algo-
rithms will also help detect copyright infringe-
ments. Example: AIVA (AI music com-
poser), OpenAI’s Jukebox.

4. AI in Business: Businesses will leverage AI for
decision-making, automation, fraud detec-
tion, personalized marketing, and supply
chain optimization. AI-driven chatbots and
virtual assistants will enhance customer service,
while predictive analytics will improve financial
forecasting.

5. AI in Healthcare: AI will transform healthcare
through AI-powered diagnosis, robotic surgeries,
drug discovery, and personalized treatment plans.
AI-driven systems will detect diseases (like cancer
and Alzheimer’s) at early stages, leading to better
outcomes and lower healthcare costs. Example:
Google’s DeepMind, IBM Watson Health.

The future of AI is set to revolutionize multiple in-
dustries, making systems smarter, more efficient, and

29 Python & Fundamental of AI page:29



6.2 Implement Machine Learning 6 DEVELOP AI BASED APPLICATIONS

Figure 10: AI in Health care

deeply integrated into human life.

6.2 Implement Machine Learning

Figure 11: Essential Python Libraries for Data Ana-
lytics

6.2.1 Definition of Key Terms:

1. Data Splitting: The process of dividing a
dataset into training, validation, and testing sets
to evaluate machine learning models. Common
splits include 80-20 (train-test) or 70-20-10
(train-validation-test).

2. Numerical Data: Data represented in numbers,
used for calculations and analysis. It includes dis-
crete data (e.g., number of students) and contin-
uous data (e.g., height, weight, temperature).

3. Categorical Data: Data that represents distinct
groups or categories, often non-numeric. Exam-
ple: Gender (Male/Female), Colors (Red, Blue,
Green), Types of animals (Dog, Cat, Bird).

4. Ordinal Data: A type of categorical data with a
meaningful order but without fixed intervals be-
tween values. Example: Education levels (High
School ¡ Bachelor’s ¡ Master’s ¡ PhD), Customer
satisfaction ratings (Low ¡ Medium ¡ High).

5. Percentile : A statistical measure indicating the
relative position of a value within a dataset. Ex-
ample: A student scoring in the 90th percentile
performed better than 90% of others.

6. Data Distribution: The way data values are
spread or arranged in a dataset. Common distri-
butions include normal distribution, skewed dis-
tribution, and uniform distribution.

7. Algorithm : A set of rules or instructions used
by a computer to solve a problem or perform a
task. Machine learning algorithms include deci-
sion trees, neural networks, and support vector
machines.

8. Model : A trained machine learning system that
learns patterns from data to make predictions or
classifications. Example: A spam filter model
that detects spam emails.

9. Scatter Plot: A graphical representation of two
numerical variables, showing their relationship. It
helps visualize patterns, trends, and correlations.

10. Importance of Machine Learning: Machine
learning automates decision-making, improves ef-
ficiency, enhances predictions, and enables per-
sonalized experiences in industries like healthcare,
finance, and business.

11. Data Slicing: The process of dividing data into
smaller subsets based on specific conditions or
attributes for better analysis and training. Ex-
ample: Filtering customer data by region or age
group.

These concepts are fundamental in data science and
machine learning, helping in better data analysis,
model building, and decision-making.

6.2.2 Define Variables and data

1. Predictor Variable (Independent Variable):
A variable used to predict or explain the response
variable. It is also called an input variable or fea-
ture in machine learning. Example: In predicting
house prices, features like square footage, number
of rooms, and location are predictor variables.

30 Python & Fundamental of AI page:30



6.2 Implement Machine Learning 6 DEVELOP AI BASED APPLICATIONS

2. Response Variable (Dependent Variable):
The outcome or target variable that the model
tries to predict based on predictor variables. Ex-
ample: In house price prediction, the price of the
house is the response variable.

3. Training Data: A subset of the dataset used
to train a machine learning model. It helps the
model learn patterns and relationships between
predictor and response variable

4. Testing Data: A separate subset of the dataset
used to evaluate the model’s performance after
training. It ensures that the model generalizes
well to new, unseen data

5. Data Scraping (Web Scraping): The process
of extracting large amounts of data from websites
using automated tools or scripts. It is commonly
used in data collection for machine learning, re-
search, and analysis. Example: Scraping product
prices from e-commerce sites.

These concepts are essential in building and evaluating
machine learning models effectively.

6.2.3 Machine Learning processes

Machine learning (ML) is a subset of artificial intelli-
gence (AI) that enables computers to learn from data
without explicit programming, allowing them to im-
prove their performance and make predictions or deci-
sions over time[2]

1. Define Objective: Identify the problem to be
solved and the goal of the machine learning model.
Example: Predicting customer churn, detecting
fraud, or classifying emails as spam or not.

2. Data Gathering: Collect relevant data from
sources like databases, APIs, sensors, or web
scraping. High-quality data is crucial for model
performance.

3. Preparing Data: Clean and preprocess the data
by handling missing values, removing duplicates,
normalizing numerical data, encoding categori-
cal variables, and splitting data into training and
testing sets.

4. Data Exploration: Analyze data using visual-
izations and statistical techniques to understand
distributions, relationships, and potential biases
before training the model. Example: Using scat-
ter plots, histograms, or correlation matrices.

5. Building Model: Select an appropriate machine
learning algorithm (e.g., decision trees, neural
networks, support vector machines) and train the
model using the training dataset.

6. Model Evaluation: Assess the model’s perfor-
mance using metrics like accuracy, precision, re-
call, F1-score, and RMSE (Root Mean Squared
Error) on the testing dataset.

7. Predictions : Use the trained model to make
predictions on new, unseen data and apply it to
real-world scenarios. Example: Recommending
movies based on user preferences.

This structured process ensures the development of ac-
curate, reliable, and efficient machine learning models.

6.2.4 Types of Machine Learning

Each type of machine learning serves different applica-
tions, helping to solve a variety of real-world problems.

1. Supervised Learning: The model learns from
labeled data, where both input (features) and out-
put (target variable) are provided.

(a) Example: Spam email detection (emails la-
beled as spam or not spam), house price pre-
diction.

(b) Algorithms: Linear regression, decision
trees, support vector machines (SVM), neu-
ral networks.

2. Unsupervised Learning: The model learns
patterns from unlabeled data without predefined
outputs. It identifies structures, clusters, or asso-
ciations within the data.

(a) Example: Customer segmentation in mar-
keting, anomaly detection in fraud detection.

(b) Algorithms: K-Means clustering, hierar-
chical clustering, principal component anal-
ysis (PCA), autoencoders.

3. Reinforcement Learning: The model learns by
interacting with an environment and receiving re-
wards or penalties based on actions taken

(a) Example: Self-driving cars, game-playing
AI like AlphaGo, robotic automation.

(b) Algorithms: Q-learning, deep Q-networks
(DQN), policy gradient methods.

6.2.5 Machine Learning Algorithm

Machine learning algorithms are used to make predic-
tions, classify data, and identify patterns. Below is
an in-depth explanation of key algorithms: (consider
figure [13], [14], and [15])

1. Linear Regression

31 Python & Fundamental of AI page:31



6.2 Implement Machine Learning 6 DEVELOP AI BASED APPLICATIONS

Figure 12: Data Preprocessing Workflow

Figure 13: Machine learning types and its algorithms

(a) Definition
Linear regression is a supervised learning al-
gorithm used for predicting continuous nu-
merical values based on the relationship be-
tween independent (predictor) and depen-
dent (response) variables. It assumes a linear
relationship between input features and the
target variable.

(b) Mathematical Representation: The
equation for a simple linear regression model
is:

Y = β0 + β1X + ϵ

where: Where:

• Y = Predicted output (dependent vari-
able)

• X = Input feature (independent vari-
able)

• β0 = Intercept (bias term)

• β1 = Slope (weight assigned to X)

Figure 14: Machine learning types and its target na-
ture

• ϵ = Error term

(c) Use Cases: House price prediction based on
size and location, Forecasting sales revenue,
Predicting temperature changes

(d) Advantages
Simple and easy to interpret, and Works well
for linearly related data.

(e) Disadvantages
Poor performance on non-linear relation-
ships, and Sensitive to outliers

Examples: Simple Linear Regression (One
Feature)

1

2 import numpy as np

32 Python & Fundamental of AI page:32



6.2 Implement Machine Learning 6 DEVELOP AI BASED APPLICATIONS

Figure 15: Machine learning types with Learning
Tasks and examples

3 import matplotlib.pyplot as plt

4 from sklearn.linear_model import

LinearRegression

5

6 # Generate sample data

7 X = np.array([1, 2, 3, 4, 5]).

reshape(-1, 1)

8 y = np.array([2, 4, 5, 4, 5])

9

10 # Create and train the model

11 model = LinearRegression ()

12 model.fit(X, y)

13

14 # Make predictions

15 y_pred = model.predict(X)

16

17 # Plot results

18 plt.scatter(X, y, color=’blue’,

label="Actual Data")

19 plt.plot(X, y_pred , color=’red’,

linewidth=2, label="Regression Line"

)

20 plt.xlabel("X")

21 plt.ylabel("y")

22 plt.legend ()

23 plt.show()

24

25 # Print model coefficients

26 print(f"Intercept: {model.intercept_

}")

27 print(f"Coefficient: {model.coef_

[0]}")

28

Listing 188: With one features

Multiple Linear Regression (Multiple Fea-
tures)

1

2 import numpy as np

3 import pandas as pd

4 from sklearn.linear_model import

LinearRegression

5 from sklearn.model_selection import

train_test_split

6 from sklearn.metrics import

mean_squared_error

7

8 # Sample dataset

9 data = {

10 ’Feature1 ’: [1, 2, 3, 4, 5, 6,

7, 8, 9, 10],

11 ’Feature2 ’: [10, 9, 8, 7, 6, 5,

4, 3, 2, 1],

12 ’Target ’: [2.2, 3.8, 5.5, 7.1,

8.7, 10.1, 11.8, 13.4, 15.0, 16.5]

13 }

14

15 df = pd.DataFrame(data)

16

17 # Split dataset

18 X = df[[’Feature1 ’, ’Feature2 ’]]

19 y = df[’Target ’]

20 X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size

=0.2, random_state =42)

21

22 # Train model

23 model = LinearRegression ()

24 model.fit(X_train , y_train)

25

26 # Predictions

27 y_pred = model.predict(X_test)

28

29 # Model evaluation

30 mse = mean_squared_error(y_test ,

y_pred)

31 print(f"Mean Squared Error: {mse}")

32 print(f"Intercept: {model.intercept_

}")

33 print(f"Coefficients: {model.coef_}"

)

34

Listing 189: With Multiple features

Linear Regression with a Real Dataset
(Boston Housing)

1

2 from sklearn.datasets import

load_diabetes

3 from sklearn.linear_model import

LinearRegression

4 from sklearn.model_selection import

train_test_split

5 from sklearn.metrics import

mean_absolute_error , r2_score

6

7 # Load dataset

8 data = load_diabetes ()

9 X = data.data

10 y = data.target

11

12 # Split dataset

13 X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size

=0.2, random_state =42)

14

15 # Train model

16 model = LinearRegression ()

17 model.fit(X_train , y_train)

18

19 # Predictions

20 y_pred = model.predict(X_test)

21

22 # Model evaluation

33 Python & Fundamental of AI page:33



6.2 Implement Machine Learning 6 DEVELOP AI BASED APPLICATIONS

23 mae = mean_absolute_error(y_test ,

y_pred)

24 r2 = r2_score(y_test , y_pred)

25

26 print(f"Mean Absolute Error: {mae}")

27 print(f"R-squared Score: {r2}")

28 print(f"Intercept: {model.intercept_

}")

29 print(f"Coefficients: {model.coef_}"

)

30

Listing 190: With Real dataset

2. Logistic Regression

(a) Definition
Logistic regression is a classification algo-
rithm used when the output variable is cat-
egorical (binary or multi-class). Instead of
predicting a continuous value like linear re-
gression, it predicts probabilities for class
labels[3].

(b) Mathematical Representation
Logistic regression uses the sigmoid func-
tion (logistic function) to map predictions
between 0 and 1.

P (Y = 1 | X) =
1

1 + e−(β0+β1X)

Where:

• P (Y = 1 | X) = Probability of the pos-
itive class

• e = Euler’s number (≈ 2.718)

• β0, β1 = Coefficients

(c) Use Cases
Spam detection (Spam or Not Spam), Med-
ical diagnosis (Disease or No Disease), and
Credit risk assessment (Default or No De-
fault)

(d) Advantages
Works well for binary classification, and Pro-
vides probability scores for predictions

(e) Disadvantages
Assumes a linear relationship between fea-
tures and log-odds, and Not suitable for com-
plex, non-linear problems

Examples: Binary Classification using Lo-
gistic Regression

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.linear_model import

LogisticRegression

4 from sklearn.model_selection import

train_test_split

5 from sklearn.metrics import

accuracy_score ,

classification_report

6

7 # Generate sample data

8 np.random.seed (42)

9 X = np.random.rand (100, 1) * 10 #

Features (100 samples)

10 y = (X > 5).astype(int).ravel() #

Labels (Binary classification: 0 or

1)

11

12 # Split data

13 X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size

=0.2, random_state =42)

14

15 # Train logistic regression model

16 model = LogisticRegression ()

17 model.fit(X_train , y_train)

18

19 # Predictions

20 y_pred = model.predict(X_test)

21

22 # Evaluate model

23 accuracy = accuracy_score(y_test ,

y_pred)

24 print(f"Accuracy: {accuracy :.2f}")

25 print("Classification Report :\n",

classification_report(y_test , y_pred

))

26

27 # Plot decision boundary

28 X_range = np.linspace(0, 10, 100).

reshape(-1, 1)

29 y_prob = model.predict_proba(X_range

)[:, 1]

30

31 plt.scatter(X_train , y_train , color=

’blue’, label="Training Data")

32 plt.scatter(X_test , y_test , color=’

red’, label="Testing Data")

33 plt.plot(X_range , y_prob , color=’

black’, linewidth=2, label="Decision

Boundary")

34 plt.xlabel("Feature")

35 plt.ylabel("Probability")

36 plt.legend ()

37 plt.show()

38

39

Listing 191: Binary Classification

Multiclass Classification using Logistic Re-
gression (Iris Dataset)

1 from sklearn.datasets import

load_iris

2 from sklearn.linear_model import

LogisticRegression

3 from sklearn.model_selection import

train_test_split

4 from sklearn.metrics import

accuracy_score ,

classification_report

5

6 # Load Iris dataset

7 iris = load_iris ()

8 X, y = iris.data , iris.target #

Features and labels

9

10 # Split data

11 X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size

=0.2, random_state =42)

12

34 Python & Fundamental of AI page:34



6.2 Implement Machine Learning 6 DEVELOP AI BASED APPLICATIONS

13 # Train logistic regression model

14 model = LogisticRegression(

multi_class=’ovr’, solver=’lbfgs ’,

max_iter =200)

15 model.fit(X_train , y_train)

16

17 # Predictions

18 y_pred = model.predict(X_test)

19

20 # Evaluate model

21 accuracy = accuracy_score(y_test ,

y_pred)

22 print(f"Accuracy: {accuracy :.2f}")

23 print("Classification Report :\n",

classification_report(y_test , y_pred

))

24

25

Listing 192: Using Iris dataset

Logistic Regression on a Real Dataset
(Breast Cancer Detection)

1 from sklearn.datasets import

load_breast_cancer

2 from sklearn.linear_model import

LogisticRegression

3 from sklearn.model_selection import

train_test_split

4 from sklearn.metrics import

confusion_matrix ,

classification_report ,

accuracy_score

5

6 # Load dataset

7 data = load_breast_cancer ()

8 X, y = data.data , data.target

9

10 # Split data

11 X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size

=0.2, random_state =42)

12

13 # Train model

14 model = LogisticRegression(max_iter

=5000)

15 model.fit(X_train , y_train)

16

17 # Predictions

18 y_pred = model.predict(X_test)

19

20 # Evaluate model

21 accuracy = accuracy_score(y_test ,

y_pred)

22 conf_matrix = confusion_matrix(

y_test , y_pred)

23

24 print(f"Accuracy: {accuracy :.2f}")

25 print("Confusion Matrix :\n",

conf_matrix)

26 print("Classification Report :\n",

classification_report(y_test , y_pred

))

27

28

Listing 193: Using Breast Cancer Detection

3. Decision Tree

(a) Definition
A decision tree is a rule-based algorithm

that splits data into branches based on fea-
ture values, creating a tree-like structure for
decision-making.

(b) Working Mechanism

• The algorithm starts from a root node
and splits data based on conditions at
each node

• Splitting is done using metrics like Gini
Impurity or Entropy (Information Gain)

• The tree grows until a stopping criterion
is met (e.g., maximum depth or mini-
mum samples per leaf). consider figure
[16]

Figure 16: Decision Tree

(c) Use Cases
Customer segmentation, Fraud detection,
and Medical diagnosis

(d) Advantages

35 Python & Fundamental of AI page:35



6.2 Implement Machine Learning 6 DEVELOP AI BASED APPLICATIONS

Easy to understand and interpret, and Han-
dles both numerical and categorical data

(e) Disadvantages
Prone to overfitting (deep trees can be too
complex), and Unstable (small changes in
data can change the tree structure)

Examples:Decision Tree for Classification
(Binary Classification)

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.tree import

DecisionTreeClassifier , plot_tree

4 from sklearn.model_selection import

train_test_split

5 from sklearn.metrics import

accuracy_score ,

classification_report

6

7 # Generate sample data

8 np.random.seed (42)

9 X = np.random.rand (100, 1) * 10 #

Features

10 y = (X > 5).astype(int).ravel() #

Labels (0 or 1)

11

12 # Split data

13 X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size

=0.2, random_state =42)

14

15 # Train decision tree model

16 model = DecisionTreeClassifier(

max_depth =3)

17 model.fit(X_train , y_train)

18

19 # Predictions

20 y_pred = model.predict(X_test)

21

22 # Evaluate model

23 accuracy = accuracy_score(y_test ,

y_pred)

24 print(f"Accuracy: {accuracy :.2f}")

25 print("Classification Report :\n",

classification_report(y_test , y_pred

))

26

27 # Plot decision tree

28 plt.figure(figsize =(10, 6))

29 plot_tree(model , filled=True ,

feature_names =["Feature"])

30 plt.show()

31

Listing 194: Binary classification

Decision Tree for Multiclass Classification
(Iris Dataset)

1 from sklearn.datasets import

load_iris

2 from sklearn.tree import

DecisionTreeClassifier

3 from sklearn.model_selection import

train_test_split

4 from sklearn.metrics import

accuracy_score ,

classification_report

5

6 # Load Iris dataset

7 iris = load_iris ()

8 X, y = iris.data , iris.target

9

10 # Split data

11 X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size

=0.2, random_state =42)

12

13 # Train decision tree model

14 model = DecisionTreeClassifier(

max_depth =4)

15 model.fit(X_train , y_train)

16

17 # Predictions

18 y_pred = model.predict(X_test)

19

20 # Evaluate model

21 accuracy = accuracy_score(y_test ,

y_pred)

22 print(f"Accuracy: {accuracy :.2f}")

23 print("Classification Report :\n",

classification_report(y_test , y_pred

))

24

Listing 195: Multiclass classification using Iris dataset

Decision Tree for Regression

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.tree import

DecisionTreeRegressor

4

5 # Generate sample data

6 np.random.seed (42)

7 X = np.sort(5 * np.random.rand(80,

1), axis =0)

8 y = np.sin(X).ravel() + np.random.

randn (80) * 0.1 # Adding noise

9

10 # Train decision tree regressor

11 model = DecisionTreeRegressor(

max_depth =4)

12 model.fit(X, y)

13

14 # Predict

15 X_test = np.linspace(0, 5, 100).

reshape(-1, 1)

16 y_pred = model.predict(X_test)

17

18 # Plot results

19 plt.scatter(X, y, color="blue",

label="Training Data")

20 plt.plot(X_test , y_pred , color="red"

, linewidth =2, label="Decision Tree

Prediction")

21 plt.xlabel("Feature")

22 plt.ylabel("Target")

23 plt.legend ()

24 plt.show()

25

Listing 196: Decision tree for Regression

4. Random Forest

(a) Definition
Random forest is an ensemble learning algo-
rithm that builds multiple decision trees and
combines their outputs for better accuracy

36 Python & Fundamental of AI page:36



6.2 Implement Machine Learning 6 DEVELOP AI BASED APPLICATIONS

and stability. It reduces overfitting by aver-
aging multiple predictions.

(b) Working Mechanism

• Creates multiple decision trees using
bootstrap sampling (random sampling
with replacement).

• Uses random feature selection to reduce
correlation between trees.

• Aggregates predictions using majority
voting (classification) or averaging (re-
gression).

(c) Use Cases
Loan approval prediction, Image classifica-
tion, and Disease diagnosis

(d) Advantages
High accuracy compared to single decision
trees, and Works well with missing data and
imbalanced datasets

(e) Disadvantages
Computationally expensive for large
datasets, and Less interpretable than a
single decision tree

5. K-Nearest Neighbors (KNN)

Figure 17: K-Nearest Neighbor

(a) Definition
KNN is a non-parametric, instance-based
learning algorithm that classifies new data
points based on the majority class of their K
nearest neighbors in the training data. Refer
to figure [17]

(b) Working Mechanism

i. Select a value for K (number of neigh-
bors).

ii. Measure the distance between the new
data point and all training points using
Euclidean distance or Manhattan dis-
tance

iii. Identify the K nearest neighbors.

iv. Assign the most common class label
(classification) or compute the average
(regression).

(c) Use Cases
Handwriting recognition, Recommender sys-
tems, and Fraud detection

(d) Advantages
Simple and intuitive, and Works well for
small datasets

(e) Disadvantages
Computationally expensive for large datasets
(requires storing all data points), and Sensi-
tive to irrelevant features and noisy data

Examples: 2 KNN for Binary Classification

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.neighbors import

KNeighborsClassifier

4 from sklearn.model_selection import

train_test_split

5 from sklearn.metrics import

accuracy_score ,

classification_report

6

7 # Generate sample data

8 np.random.seed (42)

9 X = np.random.rand (100, 1) * 10 #

Feature

10 y = (X > 5).astype(int).ravel() #

Labels (Binary classification: 0 or

1)

11

12 # Split data

13 X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size

=0.2, random_state =42)

14

15 # Train KNN model

16 model = KNeighborsClassifier(

n_neighbors =5) # Using k=5

17 model.fit(X_train , y_train)

18

19 # Predictions

20 y_pred = model.predict(X_test)

21

22 # Evaluate model

23 accuracy = accuracy_score(y_test ,

y_pred)

24 print(f"Accuracy: {accuracy :.2f}")

25 print("Classification Report :\n",

classification_report(y_test , y_pred

))

2K-Nearest Neighbor(KNN) is a very simple, easy-to-
understand, versatile, and one of the topmost machine learning
algorithms. KNN used in a variety of applications such as
finance, healthcare, political science, handwriting detection,
image recognition, and video recognition.

For more information and explained codes clicki here ma-
chinelearningeek.com and mlarchive.com

37 Python & Fundamental of AI page:37

https://machinelearninggeek.com/knn-classification-using-scikit-learn/
https://machinelearninggeek.com/knn-classification-using-scikit-learn/
https://mlarchive.com/machine-learning/k-nearest-neighbor-knn-explained/


6.2 Implement Machine Learning 6 DEVELOP AI BASED APPLICATIONS

26

Listing 197: KNN for Binary Classification

KNN for Multiclass Classification (Iris
Dataset)

1 from sklearn.datasets import

load_iris

2 from sklearn.neighbors import

KNeighborsClassifier

3 from sklearn.model_selection import

train_test_split

4 from sklearn.metrics import

accuracy_score ,

classification_report

5

6 # Load Iris dataset

7 iris = load_iris ()

8 X, y = iris.data , iris.target

9

10 # Split data

11 X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size

=0.2, random_state =42)

12

13 # Train KNN model

14 model = KNeighborsClassifier(

n_neighbors =5) # Using k=5

15 model.fit(X_train , y_train)

16

17 # Predictions

18 y_pred = model.predict(X_test)

19

20 # Evaluate model

21 accuracy = accuracy_score(y_test ,

y_pred)

22 print(f"Accuracy: {accuracy :.2f}")

23 print("Classification Report :\n",

classification_report(y_test , y_pred

))

24

Listing 198: KNN for Multiclass classification

KNN for Regression

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.neighbors import

KNeighborsRegressor

4

5 # Generate sample data

6 np.random.seed (42)

7 X = np.sort(5 * np.random.rand(80,

1), axis =0)

8 y = np.sin(X).ravel() + np.random.

randn (80) * 0.1 # Adding noise

9

10 # Train KNN Regressor

11 model = KNeighborsRegressor(

n_neighbors =5) # Using k=5

12 model.fit(X, y)

13

14 # Predict

15 X_test = np.linspace(0, 5, 100).

reshape(-1, 1)

16 y_pred = model.predict(X_test)

17

18 # Plot results

19 plt.scatter(X, y, color="blue",

label="Training Data")

20 plt.plot(X_test , y_pred , color="red"

, linewidth =2, label="KNN Prediction

")

21 plt.xlabel("Feature")

22 plt.ylabel("Target")

23 plt.legend ()

24 plt.show()

25

26

Listing 199: KNN for regression

6. Support Vector Machine (SVM)

(a) Definition
SVM is a powerful classification algorithm
that finds the optimal hyperplane to separate
classes with the maximum margin. It works
well for both linear and non-linear classifica-
tion by using kernel tricks3.

(b) Working Mechanism

• Finds the hyperplane that best separates
different classes.

• Maximizes the margin (distance between
support vectors and hyperplane).

• Uses kernels (linear, polynomial, radial
basis function - RBF) for handling non-
linear data.

Figure 18: Support Vector Machine

(c) Use Cases
Face recognition, Spam email detection, and
Medical diagnosis

(d) Advantages
Works well for high-dimensional data, and
Effective in cases where the number of di-
mensions is greater than the number of sam-
ples

(e) Disadvantages
Computationally intensive for large datasets,
and Requires careful tuning of kernel param-
eters

Examples: SVM for Binary Classification

3scikit-learn.org

38 Python & Fundamental of AI page:38

https://scikit-learn.org/stable/modules/svm.html


6.3 Building data model 6 DEVELOP AI BASED APPLICATIONS

Figure 19: Support Vector Machine with Kernels

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.svm import SVC

4 from sklearn.model_selection import

train_test_split

5 from sklearn.metrics import

accuracy_score , classification_report

6

7 # Generate sample data

8 np.random.seed (42)

9 X = np.random.rand (100, 1) * 10 #

Feature

10 y = (X > 5).astype(int).ravel() #

Labels (Binary classification: 0 or 1)

11

12 # Split data

13 X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size =0.2,

random_state =42)

14

15 # Train SVM model

16 model = SVC(kernel=’linear ’, C=1.0) #

Linear kernel

17 model.fit(X_train , y_train)

18

19 # Predictions

20 y_pred = model.predict(X_test)

21

22 # Evaluate model

23 accuracy = accuracy_score(y_test , y_pred

)

24 print(f"Accuracy: {accuracy :.2f}")

25 print("Classification Report :\n",

classification_report(y_test , y_pred))

26

Listing 200: SVM for Binary Classification

SVM for Multiclass Classification (Iris Dataset)

1 from sklearn.datasets import load_iris

2 from sklearn.svm import SVC

3 from sklearn.model_selection import

train_test_split

4 from sklearn.metrics import

accuracy_score , classification_report

5

6 # Load Iris dataset

7 iris = load_iris ()

8 X, y = iris.data , iris.target

9

10 # Split data

11 X_train , X_test , y_train , y_test =

train_test_split(X, y, test_size =0.2,

random_state =42)

12

13 # Train SVM model

14 model = SVC(kernel=’rbf’, C=1.0, gamma=’

scale’) # RBF kernel for non -linear

classification

15 model.fit(X_train , y_train)

16

17 # Predictions

18 y_pred = model.predict(X_test)

19

20 # Evaluate model

21 accuracy = accuracy_score(y_test , y_pred

)

22 print(f"Accuracy: {accuracy :.2f}")

23 print("Classification Report :\n",

classification_report(y_test , y_pred))

24

Listing 201: SVM for Multiclass Classification (Iris
Dataset)

SVM for Regression

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from sklearn.svm import SVR

4

5 # Generate sample data

6 np.random.seed (42)

7 X = np.sort(5 * np.random.rand(80, 1),

axis =0)

8 y = np.sin(X).ravel() + np.random.randn

(80) * 0.1 # Adding noise

9

10 # Train SVM Regressor

11 model = SVR(kernel=’rbf’, C=1.0, epsilon

=0.1) # RBF kernel for smooth

regression

12 model.fit(X, y)

13

14 # Predict

15 X_test = np.linspace(0, 5, 100).reshape

(-1, 1)

16 y_pred = model.predict(X_test)

17

18 # Plot results

19 plt.scatter(X, y, color="blue", label="

Training Data")

20 plt.plot(X_test , y_pred , color="red",

linewidth=2, label="SVM Prediction")

21 plt.xlabel("Feature")

22 plt.ylabel("Target")

23 plt.legend ()

24 plt.show()

25

26

Listing 202: SVM for Regression

6.3 Building data model

6.3.1 Artificial Neural networks

1. Definition
An Artificial Neural Network (ANN) is a com-
putational model inspired by the way biological

39 Python & Fundamental of AI page:39



6.3 Building data model 6 DEVELOP AI BASED APPLICATIONS

neural networks in the brain process information.
It consists of layers of interconnected nodes, also
known as neurons. ANNs are used for various ma-
chine learning tasks, such as classification, regres-
sion, pattern recognition, and function approxi-
mation.

(a) Input Layer: Receives the input features.
Refer to figure [22]

(b) Hidden Layers: Perform computations to
learn complex patterns.

(c) Output Layer: Produces the final predic-
tion or classification.

(d) Weights & Biases: Parameters that deter-
mine the strength and influence of connec-
tions between neurons.

(e) Activation Function: Non-linear func-
tions (e.g., ReLU, Sigmoid, Tanh) used to in-
troduce non-linearity and allow the network
to learn complex patterns.

2. Use Case Implementation Steps
The typical steps for implementing an artificial
neural network are as follows. Refer to figure [20],
and [21]

(a) Problem Definition: Define the problem
you want the neural network to solve (e.g.,
image classification, sentiment analysis, sales
prediction).

(b) Data Collection: Gather and preprocess
the data needed for training the model. This
may involve tasks like data cleaning, normal-
ization, and splitting into training and test
sets.

(c) Network Architecture Design: Decide
on the structure of the neural network:

• Number of layers (input, hidden, and
output layers)

• Number of neurons per layer

• Choice of activation function (e.g.,
ReLU for hidden layers, Softmax for out-
put in classification tasks)

(d) Forward Propagation: Pass the input
data through the network. Each neuron per-
forms a weighted sum of its inputs, applies
an activation function, and passes the result
to the next layer.

(e) Loss Function: Define a loss function (e.g.,
Mean Squared Error for regression, Cross-
Entropy for classification) that quantifies the
difference between predicted and actual out-
puts.

(f) Backpropagation: Update the weights and
biases of the network based on the gradient of
the loss function with respect to the weights.
This process uses optimization techniques
such as Gradient Descent.

(g) Training: Train the network by feeding the
training data and adjusting weights over sev-
eral iterations (epochs) to minimize the loss
function.

(h) Evaluation: Evaluate the trained model on
unseen test data to assess its performance
(e.g., accuracy, precision, recall).

(i) Model Deployment: Once the model is
trained and evaluated, deploy it to make
real-time predictions on new data.

Typical Example4:

1 import tensorflow as tf

2 from tensorflow import keras

3 import numpy as np

4 import matplotlib.pyplot as plt

5

6 # Load MNIST dataset

7 (X_train , y_train), (X_test , y_test)

= keras.datasets.mnist.load_data ()

8

9 # Normalize pixel values to range

[0,1]

10 X_train , X_test = X_train / 255.0 ,

X_test / 255.0

11

12 # Flatten images (28 x28 to 784

features)

13 X_train = X_train.reshape(-1, 28 *

28)

14 X_test = X_test.reshape(-1, 28 * 28)

15

16 # Define Neural Network model

17 model = keras.Sequential ([

18 keras.layers.Dense (128,

activation=’relu’, input_shape

=(784 ,)), # Input layer

19 keras.layers.Dense(64,

activation=’relu’), # Hidden layer

20 keras.layers.Dense(10,

activation=’softmax ’) # Output

layer (10 classes)

21 ])

22

23 # Compile model

24 model.compile(optimizer=’adam’, loss

=’sparse_categorical_crossentropy ’,

metrics =[’accuracy ’])

25

26 # Train model

27 model.fit(X_train , y_train , epochs

=10, batch_size =32, validation_data

=(X_test , y_test))

28

29 # Evaluate model

30 test_loss , test_acc = model.evaluate

(X_test , y_test , verbose =2)

31 print(f"Test accuracy: {test_acc :.2f

}")

4This model achieves around 97-98% accuracy on the MNIST
test set

40 Python & Fundamental of AI page:40



6.3 Building data model 6 DEVELOP AI BASED APPLICATIONS

Figure 20: Most of Artificial Neural Network flow

Figure 21: Summarized ANN workflow

32

33 # Make a prediction

34 predictions = model.predict(X_test)

35

36 # Display an example

37 index = np.random.randint(0, len(

X_test))

38 plt.imshow(X_test[index]. reshape (28,

28), cmap=’gray’)

39 plt.title(f"Predicted: {np.argmax(

predictions[index])}, Actual: {

Figure 22: Neural Network Architecture

y_test[index]}")

40 plt.show()

Listing 203: MNIST Classification

(a) Data Preprocessing

• The MNIST dataset contains 28x28
grayscale images of handwritten digits
(0-9). Refer to figure [23]

• The pixel values are normalized to
[0,1].

• The images are flattened from (28,28)
- (784,) for input into the neural net-
work.

(b) Model Architecture

• Input Layer: 784 neurons (one for each
pixel).

41 Python & Fundamental of AI page:41



6.3 Building data model 6 DEVELOP AI BASED APPLICATIONS

Figure 23: Convolution Neural Network Illustration (CNN)

• Hidden Layers: First hidden layer
with 128 neurons (ReLU activation).
Second hidden layer with 64 neurons
(ReLU activation).

• Output Layer: 10 neurons (one for
each digit 0-9), using softmax activa-
tion.

(c) Compilation & Training

• Loss Function:
sparse categorical crossentropy (since
labels are integers).

• Optimizer: adam (Adaptive Moment
Estimation).

• Metrics: Accuracy is used to evaluate
the model.

• The model is trained for 10 epochs with
a batch size of 32.

(d) Prediction & Visualization

• A random test image is displayed
with its predicted and actual label.

3. Neural Network Examples

(a) Image Classification (CNNs)

• Problem: Classifying images into cate-
gories (e.g., dog vs. cat).

• Example: A Convolutional Neural Net-
work (CNN) can be used to process im-
age data by extracting spatial features
using convolutional layers, followed by
fully connected layers for classification.
CNNs are highly effective for image-
related tasks.

• Use case: Recognizing handwritten
digits (MNIST dataset).

(b) Natural Language Processing (RNNs
& LSTMs)

• Problem: Predicting the next word in
a sentence or generating text.

• Example: A Recurrent Neural Net-
work (RNN) or Long Short-Term Mem-
ory (LSTM) network can be used to

42 Python & Fundamental of AI page:42



6.3 Building data model 6 DEVELOP AI BASED APPLICATIONS

process sequential data, such as text.
LSTMs are especially good at capturing
long-range dependencies in the text.

• Use case: Sentiment analysis of re-
views or text generation using models
like GPT (Generative Pretrained Trans-
former).

Examples5:

RNN for Text Classification (Senti-
ment Analysis on IMDB Dataset)

1 import tensorflow as tf

2 from tensorflow import keras

3 from tensorflow.keras.

preprocessing.sequence import

pad_sequences

4 import numpy as np

5

6 # Load IMDB dataset

7 vocab_size = 10000 # Use top

10,000 words

8 max_length = 200 # Max length

of a review

9 (X_train , y_train), (X_test ,

y_test) = keras.datasets.imdb.

load_data(num_words=vocab_size)

10

11 # Pad sequences to ensure

uniform input size

12 X_train = pad_sequences(X_train

, maxlen=max_length , padding=’

post’, truncating=’post’)

13 X_test = pad_sequences(X_test ,

maxlen=max_length , padding=’

post’, truncating=’post’)

14

15 # Define RNN Model

16 model = keras.Sequential ([

17 keras.layers.Embedding(

input_dim=vocab_size ,

output_dim =128, input_length=

max_length),

18 keras.layers.SimpleRNN (64,

return_sequences=False), #

Basic RNN layer

19 keras.layers.Dense(1,

activation=’sigmoid ’) # Binary

classification

20 ])

21

22 # Compile Model

23 model.compile(optimizer=’adam’,

loss=’binary_crossentropy ’,

metrics =[’accuracy ’])

24

25 # Train Model

26 model.fit(X_train , y_train ,

epochs=5, batch_size =64,

validation_data =(X_test , y_test

))

27

28 # Evaluate Model

29 loss , accuracy = model.evaluate

(X_test , y_test)

30 print(f"Test Accuracy: {

accuracy :.2f}")

5These examples cover RNN-based and LSTM-based NLP
tasks: Text Classification (Sentiment Analysis on IMDB)
Text Generation (Next-word prediction)

31

Listing 204: Sentiment Analysis on IMDB Dataset

Explanation

• Dataset: IMDB Movie Reviews (binary
sentiment classification)

• Preprocessing: Padding ensures all re-
views have a uniform length.

• Embedding Layer: Converts words
into dense vectors

• RNN Layer: Processes the sequences.

• Output Layer: Uses sigmoid activa-
tion for binary classification.

LSTM for Text Classification (Senti-
ment Analysis on IMDB)

1 import tensorflow as tf

2 from tensorflow import keras

3 from tensorflow.keras.

preprocessing.sequence import

pad_sequences

4

5 # Load IMDB dataset

6 vocab_size = 10000

7 max_length = 200

8 (X_train , y_train), (X_test ,

y_test) = keras.datasets.imdb.

load_data(num_words=vocab_size)

9

10 # Pad sequences

11 X_train = pad_sequences(X_train

, maxlen=max_length , padding=’

post’, truncating=’post’)

12 X_test = pad_sequences(X_test ,

maxlen=max_length , padding=’

post’, truncating=’post’)

13

14 # Define LSTM Model

15 model = keras.Sequential ([

16 keras.layers.Embedding(

input_dim=vocab_size ,

output_dim =128, input_length=

max_length),

17 keras.layers.LSTM(64,

return_sequences=False), #

LSTM Layer

18 keras.layers.Dense(1,

activation=’sigmoid ’) # Binary

classification

19 ])

20

21 # Compile Model

22 model.compile(optimizer=’adam’,

loss=’binary_crossentropy ’,

metrics =[’accuracy ’])

23

24 # Train Model

25 model.fit(X_train , y_train ,

epochs=5, batch_size =64,

validation_data =(X_test , y_test

))

26

27 # Evaluate Model

28 loss , accuracy = model.evaluate

(X_test , y_test)

29 print(f"Test Accuracy: {

accuracy :.2f}")

43 Python & Fundamental of AI page:43



6.3 Building data model 6 DEVELOP AI BASED APPLICATIONS

30

Listing 205: Sentiment Analysis

Why LSTM?

• Unlike a standard RNN, LSTM han-
dles long-range dependencies better due
to gates (input, forget, output).

• It helps prevent vanishing gradients.

LSTM for Text Generation
(Shakespeare-style Text)

1 import tensorflow as tf

2 import numpy as np

3 import keras

4 from keras.preprocessing.text

import Tokenizer

5 from keras.preprocessing.

sequence import pad_sequences

6

7 # Sample text data

8 text = """To be, or not to be,

that is the question:

9 Whether ’tis nobler in the mind

to suffer

10 The slings and arrows of

outrageous fortune ,"""

11

12 # Tokenization

13 tokenizer = Tokenizer ()

14 tokenizer.fit_on_texts ([text])

15 word_index = tokenizer.

word_index

16 total_words = len(word_index) +

1

17

18 # Create sequences

19 input_sequences = []

20 for line in text.split("\n"):

21 token_list = tokenizer.

texts_to_sequences ([line])[0]

22 for i in range(1, len(

token_list)):

23 input_sequences.append(

token_list [:i + 1])

24

25 # Pad sequences

26 max_length = max(len(seq) for

seq in input_sequences)

27 input_sequences = pad_sequences

(input_sequences , maxlen=

max_length , padding=’pre’)

28

29 # Split into input (X) and

output (y)

30 X, y = input_sequences [:, :-1],

input_sequences [:, -1]

31 y = keras.utils.to_categorical(

y, num_classes=total_words)

32

33 # Define LSTM Model

34 model = keras.Sequential ([

35 keras.layers.Embedding(

total_words , 50, input_length=

max_length - 1),

36 keras.layers.LSTM (100),

37 keras.layers.Dense(

total_words , activation=’

softmax ’) # Multi -class

classification

38 ])

39

40 # Compile Model

41 model.compile(loss=’

categorical_crossentropy ’,

optimizer=’adam’, metrics =[’

accuracy ’])

42

43 # Train Model

44 model.fit(X, y, epochs =500,

verbose =1)

45

46 # Generate text

47 def generate_text(seed_text ,

next_words =10):

48 for _ in range(next_words):

49 token_list = tokenizer.

texts_to_sequences ([ seed_text ])

[0]

50 token_list =

pad_sequences ([ token_list],

maxlen=max_length - 1, padding=

’pre’)

51 predicted = np.argmax(

model.predict(token_list), axis

=-1)

52 for word , index in

tokenizer.word_index.items():

53 if index ==

predicted:

54 seed_text += "

" + word

55 break

56 return seed_text

57

58 # Example prediction

59 print(generate_text("To be",

next_words =10))

60

Listing 206: Using Shakespeare-style Text

Explanation

• Data Preparation: Tokenizes text and
creates sequences of increasing length.

• LSTM Model: Predicts the next word
given previous words.

• Text Generation: Uses trained model
to predict words sequentially.

4. Speech Recognition (Deep Neural Net-
works)

• Problem: Converting spoken language into
text.

• Example: A Deep Neural Network (DNN)
can be used to process audio features like
spectrograms and transcribe them into text.
Often, CNNs and RNNs are combined for
better accuracy in speech recognition.

• Use case: Voice assistants like Siri, Alexa,
or Google Assistant.

5. Autonomous Driving (Deep Learning)

• Problem: Enabling self-driving cars to rec-
ognize road signs, pedestrians, and obstacles.

44 Python & Fundamental of AI page:44



6.3 Building data model 6 DEVELOP AI BASED APPLICATIONS

• Example: Deep Neural Networks (DNNs)
and CNNs are employed to process images
from cameras, LiDAR, and radar sensors for
object detection, classification, and decision-
making.

• Use case: Tesla’s self-driving cars use
deep learning models for real-time decision-
making based on sensor inputs.

6.3.2 Building model steps

When building a machine learning model, the process
is structured and involves several key steps to ensure
that the model is effective in solving the problem at
hand. Below are the steps for building a machine learn-
ing model

1. Identify Business Problems
Before jumping into building a model, it is es-
sential to define the problem clearly. This step
involves:

• Understanding the business objectives:
What problem does the business need to
solve?

• Deciding on the type of model: Is it a classifi-
cation problem, regression, recommendation
system, or something else?

• Setting specific goals: What outcome or
prediction does the business need from the
model?

• Communicating the expected performance:
What accuracy, precision, or other metrics
are acceptable for the model to be considered
useful?

2. Identify and Understand the Data
Once the business problem is defined, you need
to identify and understand the data that will be
used to train the model.

• Data Source: Identify where the data
comes from (e.g., databases, APIs, spread-
sheets).

• Data Relevance: Understand if the avail-
able data is relevant to solving the business
problem.

• Data Types: Identify whether the data is
numerical, categorical, or textual.

• Data Exploration: Perform exploratory
data analysis (EDA) to uncover patterns,
trends, and relationships within the data (us-
ing visualizations, correlation analysis, etc.).

• Check for Missing Values: Determine if
there are any missing or incomplete data
points that need handling.

3. Collect and Prepare Data
Data preparation is one of the most critical steps
in model development. Clean, preprocessed data
is essential for accurate and reliable models. This
includes:

• Data Cleaning: Handle missing values, re-
move duplicates, and correct errors.

• Data Transformation: Normalize or stan-
dardize numerical features and encode cate-
gorical features (e.g., one-hot encoding, label
encoding).

• Feature Engineering: Create new features
or modify existing ones based on domain
knowledge to improve model performance.

• Data Splitting: Split the data into training
and testing datasets (typically 80-20 or 70-30
split).

4. Determine Models and Train Data
After preparing the data, it is time to choose the
right machine learning model based on the prob-
lem type. This could be a:

• Supervised model: For classification or re-
gression tasks (e.g., Logistic Regression, De-
cision Trees, SVM).

• Unsupervised model: For clustering or di-
mensionality reduction tasks (e.g., K-Means,
PCA).

• Reinforcement learning: For tasks like
game-playing or robotic control (e.g., Q-
learning)

• Deep learning model: For more complex
problems, like image or speech recognition
(e.g., Neural Networks).

Once you’ve selected a model:

• Train the model using the training dataset.

• Adjust the model’s parameters and fit the
model to the data.

5. Evaluate Models
Model evaluation is crucial to assess its perfor-
mance and ensure it meets the business require-
ments. Key steps in model evaluation include:

• Model Metrics: Choose appropriate met-
rics based on the task (e.g., Accuracy, Pre-
cision, Recall, F1-Score for classification;
Mean Squared Error for regression).

• Cross-validation: Use techniques like k-
fold cross-validation to assess how the model
performs on different subsets of the data, en-
suring robustness.

45 Python & Fundamental of AI page:45



6.3 Building data model 6 DEVELOP AI BASED APPLICATIONS

• Confusion Matrix: For classification
tasks, analyze the confusion matrix to un-
derstand the true positives, false positives,
true negatives, and false negatives.

• Overfitting and Underfitting: Check if
the model generalizes well to unseen data or
if it is overfitting to the training set.

6. Experiment and Adjust the Model
After evaluating the model, you may need to re-
fine it further by experimenting with different pa-
rameters or techniques

• Hyperparameter Tuning: Use methods
like Grid Search or Random Search to tune
hyperparameters and optimize the model’s
performance.

• Feature Selection: Experiment with se-
lecting the most relevant features to improve
model accuracy.

• Model Comparison: Try different algo-
rithms (e.g., comparing Decision Trees, Ran-
dom Forests, and Support Vector Machines)
to see which one performs the best.

• Ensemble Methods: Combine multiple
models (e.g., using techniques like Bagging,
Boosting, or Stacking) to improve accuracy.

Finally, iterate on the process until you achieve an
optimal model that meets the desired performance
metrics.

6.3.3 Deep learning

1. Definition
Deep Learning is a subset of machine learning
that uses neural networks with many layers
(hence ”deep”) to model complex patterns
and representations in large datasets. Unlike
traditional machine learning algorithms, deep
learning models automatically learn feature
representations from raw data, reducing the need
for manual feature engineering. These models are
particularly effective in handling tasks like image
recognition, natural language processing (NLP),
and speech recognition.

Deep learning involves training artificial neural
networks with multiple layers, where each layer
learns to transform the input data into more
abstract and higher-level representations. The
complexity and depth of the models allow them
to learn from large amounts of data and improve
over time.

2. Natural Language Processing (NLP)
Natural Language Processing (NLP) is a field of

deep learning that focuses on the interaction be-
tween computers and human language. It allows
machines to understand, interpret, and generate
human language in a way that is valuable. Key
tasks in NLP include:

• Text Classification: Categorizing text into
predefined categories (e.g., spam detection,
sentiment analysis).

• Named Entity Recognition (NER):
Identifying entities like names, dates, loca-
tions in text.

• Machine Translation: Automatically
translating text from one language to an-
other (e.g., Google Translate).

• Text Generation: Producing coherent and
contextually appropriate text based on input
prompts (e.g., GPT-3).

Deep learning techniques, such as Recurrent
Neural Networks (RNNs), Long Short-Term
Memory networks (LSTMs) as shown in figure
[27], and Transformers (e.g., BERT, GPT), have
revolutionized NLP by achieving state-of-the-art
performance across these tasks.

Example of Speech Recognition6

This example will show how to preprocess
audio data, extract Mel Frequency Cepstral
Coefficients (MFCCs), and use a Deep Neural
Network to classify speech commands.

1 import os

2 import numpy as np

3 import librosa

4 import tensorflow as tf

5 from tensorflow.keras.models import

Sequential

6 from tensorflow.keras.layers import

Dense , Dropout

7 from sklearn.model_selection import

train_test_split

8 from sklearn.preprocessing import

LabelEncoder

9

10 # Load and process audio files to

extract MFCC features

11 def extract_features(file_path):

12 audio , sr = librosa.load(

file_path , sr=None) # Load the

audio file

13 mfcc = librosa.feature.mfcc(

audio , sr=sr, n_mfcc =13) # Extract

MFCCs

14 mfcc_scaled = np.mean(mfcc.T,

axis =0) # Average over time axis

15 return mfcc_scaled

16

6We’ll use the TensorFlow/Keras framework for building the
neural network model, and Librosa for audio processing. For
simplicity, we will use a pre-recorded speech dataset, such as
Google’s Speech Commands Dataset, you can download it di-
rectly from Google’s Speech Commands Dataset

46 Python & Fundamental of AI page:46

https://www.kaggle.com/datasets/neehakurelli/google-speech-commands


6.3 Building data model 6 DEVELOP AI BASED APPLICATIONS

Figure 24: Convolution with Pooling

Figure 25: Convolve with Kernel Size

17 # Load dataset (assuming you have

your dataset ready in the folder ’

data ’)

18 data_dir = ’data/speech_commands ’

19 labels = []

20 features = []

21

22 for label in os.listdir(data_dir):

23 label_path = os.path.join(

data_dir , label)

24 if os.path.isdir(label_path):

25 for file in os.listdir(

label_path):

26 if file.endswith(".wav")

:

27 file_path = os.path.

join(label_path , file)

28 mfcc =

extract_features(file_path)

29 features.append(mfcc

)

30 labels.append(label)

31

32 # Convert to numpy arrays

33 X = np.array(features)

34 y = np.array(labels)

35

36 # Encode labels to numeric values

37 label_encoder = LabelEncoder ()

38 y_encoded = label_encoder.

fit_transform(y)

39

40 # Split into train and test sets

41 X_train , X_test , y_train , y_test =

train_test_split(X, y_encoded ,

test_size =0.2, random_state =42)

42

43 # Build the Deep Neural Network

model

44 model = Sequential ([

45 Dense (128, activation=’relu’,

input_shape =( X_train.shape [1],)), #

Input layer

46 Dropout (0.2),

47 Dense(64, activation=’relu’),

48 Dropout (0.2),

49 Dense(len(np.unique(y_encoded)),

activation=’softmax ’) # Output

layer for multi -class classification

50 ])

51

52 # Compile the model

47 Python & Fundamental of AI page:47



6.3 Building data model 6 DEVELOP AI BASED APPLICATIONS

53 model.compile(optimizer=’adam’, loss

=’sparse_categorical_crossentropy ’,

metrics =[’accuracy ’])

54

55 # Train the model

56 model.fit(X_train , y_train , epochs

=20, batch_size =32, validation_data

=(X_test , y_test))

57

58 # Evaluate the model

59 loss , accuracy = model.evaluate(

X_test , y_test)

60 print(f"Test Accuracy: {accuracy :.2f

}")

61

62 # Function for predicting a command

from audio

63 def predict_command(audio_path):

64 mfcc = extract_features(

audio_path)

65 mfcc = np.expand_dims(mfcc , axis

=0) # Add batch dimension

66 prediction = model.predict(mfcc)

67 predicted_label = label_encoder.

inverse_transform ([np.argmax(

prediction)])

68 return predicted_label [0]

69

70 # Example usage

71 audio_file = ’data/speech_commands/

yes/0 a7c2a8d_nohash_0.wav’ #

Example file path

72 predicted_command = predict_command(

audio_file)

73 print(f"Predicted command: {

predicted_command}")

74

75

Listing 207: Speech Recognition

Explanation of the Code7

(a) Feature Extraction (MFCCs8)

• The Librosa library is used to load and
process the audio files.

• We extract MFCCs from the audio files,
which are widely used in speech recogni-
tion tasks as features.

• MFCCs are averaged across the time
axis to get a fixed-length feature vector
for each audio sample.

(b) Model Construction

• We build a Deep Neural Network (DNN)
with two hidden layers (Dense layers
with ReLU activation).

• Dropout is applied to avoid overfitting.

• The output layer uses softmax activation
to classify the audio into one of the pre-
defined speech command labels.

7Requirements: TensorFlow: For building the neural net-
work model. Librosa: For extracting MFCCs from the audio
files. NumPy and Scikit-learn: For data processing and model
evaluation. (pip install tensorflow librosa numpy scikit-
learn)

8MFCCs stands for: Mel Frequency Cepstral Coefficients

(c) Label Encoding

• The labels (e.g., “yes,” “no,” etc.) are
converted into numerical labels using
LabelEncoder.

(d) Training

• The model is trained on the audio fea-
tures (MFCCs) and the encoded labels.

• The sparse categorical crossentropy loss
function is used because the labels are
integers.

(e) Prediction

• The model predicts the command for a
given audio file using the trained model.

(f) Example

• The audio file 0a7c2a8d nohash 0.wav
is used as an example. The pre-
dict command function predicts the
speech command by extracting MFCC
features and passing them through the
model

3. Image and Object Recognition
Image and Object Recognition are two of the most
popular applications of deep learning, particularly
using Convolutional Neural Networks (CNNs).
CNNs are designed to automatically detect and
recognize patterns in images.

• Image Recognition: The process of iden-
tifying the content of an image, such as rec-
ognizing objects, scenes, or faces.

• Object Detection: Not only recognizing
objects in an image but also locating them
(bounding box around an object).

As shown form figure 26 You can read more here
9 Deep learning models have been able to out-
perform traditional computer vision methods by
automatically learning hierarchical features in im-
ages (edges, textures, shapes) from raw pixels.
Some applications include:

9a: Development of breast cancer prognostic biomarkers.

b: Main strategies of biomarker development for disease
prognosis.

c: Co-registered multi-biomarker spatial heterogeneity (IGNN)
in primary breast tumor with biomarker-biomarker interactions
unavailable from corresponding single-marker heterogeneity
(TACS1-8).

d: Personalized TACS1-8 reginal distributions in co-registered
images (H&E, MPM of second harmonic generation SHG, and
MPM of two-photon excited fluorescence TPEF) from one
exemplary patient (9 regions/nodes, each of which encoded
with an 8-bit vector) that result in one graph structure input
for IGNN model and another non-graph input for TACS1-8
model.

48 Python & Fundamental of AI page:48



6.3 Building data model 6 DEVELOP AI BASED APPLICATIONS

Figure 26: Breast Cancer Prognosis steps Illustration

• Facial recognition: Identifying individuals
from images or videos.

• Autonomous vehicles: Recognizing road
signs, pedestrians, and other vehicles.

• Medical imaging: Detecting abnormalities
like tumors in radiographs or MRI scans.

4. Prediction
Deep learning is also widely used for predictive
analytics, where the goal is to predict future out-
comes based on historical data. Some areas of
application include:

• Stock market prediction: Forecasting fu-
ture stock prices or market trends using his-
torical data.

• Sales prediction: Estimating future sales
volumes based on past sales data and trends.

• Demand forecasting: Predicting demand
for products or services, especially in supply
chain management.

Deep learning models, especially Recurrent Neu-
ral Networks (RNNs) and Long Short-Term Mem-
ory (LSTM) networks, are well-suited for sequence
prediction problems due to their ability to handle
temporal dependencies in time-series data.

5. Deep Learning Layers
A deep learning model typically consists of sev-
eral types of layers, each performing specific op-
erations. Common layers in deep learning include:

• Input Layer: Receives the raw data (e.g.,
an image or text)

• Convolutional Layers (CNN): Detect lo-
cal patterns like edges and textures in im-

49 Python & Fundamental of AI page:49



REFERENCES REFERENCES

Figure 27: A Generic LSTM-Based Neural Network
Architecture to infer Heterogeneous Model Transfor-
mations

ages.

• Recurrent Layers (RNN, LSTM): Pro-
cess sequential data such as time-series or
language.

• Fully Connected Layers: Each neuron is
connected to every neuron in the previous
layer, helping to make final predictions.

• Activation Layers: Introduces non-
linearities, making it possible for the model
to learn complex patterns (e.g., ReLU, Sig-
moid).

• Dropout Layers: Prevent overfitting by
randomly ”dropping” neurons during train-
ing.

• Output Layer: Produces the final predic-
tion or classification. For classification tasks,
a Softmax or Sigmoid activation is used to
produce probabilities.

Figure 28: The proposed 1D CNN-LSTM architecture

6. TensorFlow
TensorFlow is an open-source deep learning
framework developed by Google that allows de-
velopers to build and train deep learning mod-
els. It is highly flexible, scalable, and widely
used for creating neural networks and large-scale
machine learning models10. TensorFlow supports

10tensorflow.org TensorFlow makes it easy to create ML mod-
els that can run in any environment. Learn how to use the
intuitive APIs through interactive code samples.

both CPU and GPU computations, which is cru-
cial for training large models on vast datasets.
Key features of TensorFlow include:

• Tensor: The fundamental unit in Tensor-
Flow, representing multi-dimensional arrays
or matrices.

• Keras API: A high-level neural networks
API within TensorFlow, making it easier to
build and train models with simple syntax.

• Model Deployment: TensorFlow provides
tools to deploy models in production envi-
ronments across platforms, from mobile de-
vices to large-scale servers.

• Distributed Computing: TensorFlow
supports distributed training, allowing mod-
els to be trained faster by leveraging multiple
processors or machines.

TensorFlow has become one of the most popular
frameworks for deep learning, providing an effi-
cient and comprehensive ecosystem for building,
training, and deploying models.

-End-

References

[1] Open AI. Chatgpt. Version 4, 2025.

[2] Kevin P. Murphy. Machine Learning: A Proba-
bilistic Perspective. MIT Press, 2012, 2012.

[3] Richard Szeliski. Computer Vision: Algorithms
and Applications, volume 2nd Editional. 2022
Springer, 2021.

50 Python & Fundamental of AI page:50

https://www.tensorflow.org/

	Introduction
	What is python
	What can python Do
	Prerequisite

	Prepare Python environment 
	Identify Python version 
	Definition of terms 
	Characteristic of python
	 Application of python 

	Add python Directory
	Local Environment set up
	Running Python 

	Identify library
	Definition of key terms
	Identification of problem 
	Getting library 


	Develop Python concept 
	Writing Python syntax 
	Execute syntax 
	Use Command line 
	Apply comments 

	Perform declaration 
	Definition of Key terms 
	Assigning values 
	Types of variables

	Defferentiate data type 
	Define build-in data type 
	Numbers


	Develop Python application 
	Use of operators 
	Arthimetic operators
	Comparison operators
	Logical Operator 
	Other operators

	Determine collection of data 
	Definition of list
	Definition of Tuple 
	Definition of Set 
	Definition of Dictionary

	Understand condition statement 
	Explaination of Logical condition
	Eplaination of IF statemnt 

	Identify other functions and classes 
	Use of Looping 
	Definition of Functions 
	Definition of Classes/Objects
	Definition of other tools 


	Develop python scripting
	Perform file handling 
	Practice to read file
	Practice to read file 
	Pactice to delete file

	Determine Python Libraries 
	Interact with database 
	Python Mysql commands 
	MongoDB


	Develop AI based applications 
	Introduce AI 
	Definitiona of Key terms:
	Types of AI
	Real life example of AI 
	Future of AI 

	Implement Machine Learning 
	Definition of Key Terms:
	 Define Variables and data
	Machine Learning processes 
	Types of Machine Learning 
	Machine Learning Algorithm 

	Building data model 
	Artificial Neural networks 
	Building model steps 
	Deep learning 



